Rui-dong Cheng

Learn More
Adenosine 5'-triphosphate disodium (ATP) gated P2X receptors, especially the subtype P2X(3), play a key role in transmission of pain signals in neuropathic pain, ATP has been documented to play a significant role in the progression of pain signals, suggesting that control of these pathways through electroacupuncture (EA) is potentially an effective(More)
Post-ischemic inflammation is an essential step in the progression of brain ischemia injury. P2X4 receptors are the predominant purinergic P2X receptor subtypes expressed on immune and neural cells. The subtype traffic between intracellular compartments and the plasma membrane form protein interactions with each other to regulate ATP-dependent signaling.(More)
Spinal cord injury (SCI) can induce a series of histological, biochemical, and functional changes. Acupuncture is commonly used for SCI patients. Using male rats of spinal cord injury with the New York University (NYU) Impactor, we investigated the response of electroacupuncture (EA), manual acupuncture (MA), and transcutaneous acupoint electrical(More)
P2X is a family of ligand-gated ion channels that act through adenosine ATP. The P2X3 receptor plays a key role in the transmission of neuropathic pain at peripheral and spinal sites. Electroacupuncture (EA) has been used to treat neuropathic pain effectively. To determine the role of EA in neuropathic pain mediated through the P2X3 receptor in dorsal root(More)
OBJECTIVE To explore the effect of electroacupuncture (EA) on the pathomorphology of the sciatic nerve and the role of P2X3 receptors in EA analgesia. METHODS The chronic constriction injury (CCI) model was adopted in this study. A total of 32 rats were randomly divided into four groups: sham CCI, CCI, CCI plus contralateral EA (CCI + conEA) and CCI plus(More)
Applying a stimulating current to acupoints through acupuncture needles - known as electroacupuncture - has the potential to produce analgesic effects in human subjects and experimental animals. When acupuncture was applied in a rat model, adenosine 5'-triphosphate disodium in the extracellular space was broken down into adenosine, which in turn inhibited(More)
Progressive motor deficits are relatively common in acute pontine infarction and frequently associated with increased functional disability. However, the factors that affect the progression of clinical motor weakness are largely unknown. Previous studies have suggested that pontine infarctions are caused mainly by basilar artery stenosis and penetrating(More)
  • 1