Learn More
A stochastic genetic toggle switch model that consists of two identical, mutually repressive genes is built using the Gillespie algorithm with time delays as an example of a simple stochastic gene regulatory network. The stochastic kinetics of this model is investigated, and it is found that the delays for the protein productions can highly weaken the(More)
Current advances in molecular biology enable us to access the rapidly increasing body of genetic information. It is still challenging to model gene systems at the molecular level. Here, we propose two types of reaction kinetic models for constructing genetic networks. Time delays involved in transcription and translation are explicitly considered to explore(More)
To study noise in the number of protein molecules produced in gene expression, we use a delayed reaction model coupling transcription and translation to examine nine biochemical factors. Fourteen numerical experiments were performed, which show clearly the linear scaling behavior between the protein variance and the mean. We found that the most dominant(More)
BACKGROUND The RNA binding protein, DEAD END (DND1), is essential for maintaining viable germ cells in vertebrates. It is also a testicular germ cell tumor susceptibility factor in mice. DND1 has been shown to interact with the 3'-untranslated region (3'-UTR) of mRNAs such as P27 and LATS2. Binding of DND1 to the 3'-UTRs of these transcripts blocks the(More)
SUMMARY Systematic studies of drug repositioning require the integration of multi-level drug data, including basic chemical information (such as SMILES), drug targets, target-related signaling pathways, clinical trial information and Food and Drug Administration (FDA)-approval information, to predict new potential indications of existing drugs. Currently(More)
The increasing evidences showed that adverse early life events have profound long lasting consequences in adult rats including neural, behavioral, and cognitive effects. Early maternal separation was one of the models of adverse early life stress, but which period acts critically was unknown until now. The purpose of this paper was to explore the effects of(More)
Knowledge about in vivo spinal compressive forces is a basic requirement for spinal biomechanics. Their direct measurement is not yet possible. Therefore, compressive forces are estimated from in vivo measured intradiscal pressure values. However, it is still not evident how precise these estimations are. A finite element model of the spine was employed to(More)
Various natural polysaccharides are capable of activating the immune system and therefore can be employed as biological response modifiers in anti-tumor therapy. We previously found a homogenous polysaccharide from the mycelium of marine fungus Phoma herbarum YS4108, named YCP, exhibiting strong in vivo antitumor ability via enhancement of the host immune(More)