Rui Tao

Learn More
The dorsal (DRN) and median raphe nuclei (MRN) are two major sources of serotonergic projections to forebrain that are involved in regulation of behavioral state and motor activity, and implicated in affective disorders such as depression and schizophrenia. To investigate afferent influences on serotonergic neurons, this study compared the role of(More)
Opioid receptor subtypes may have site-specific effects and play different roles in modulating serotonergic neurotransmission in the mammalian central nervous system. To test this hypothesis, we used in vivo microdialysis to measure changes in extracellular serotonin (5-hydroxytryptamine; 5-HT) in response to local infusion of mu-, delta-, and kappa-opioid(More)
The relative importance of GABAergic and glutamatergic afferents in mediating the effects of mu- and kappa-opioids on serotonin (5-HT) efflux in vivo has not been firmly established. Thus, we used microdialysis in the dorsal raphe nucleus (DRN) of freely behaving rats to study the effect of GABA and glutamate receptor antagonists on opioid-induced changes(More)
Hypothalamic 5-HT (serotonin) regulates food intake, energy expenditure and bodyweight. Using in vivo microdialysis, we determined the effects of various anorectic drugs on hypothalamic extracellular 5-HT levels during the dark phase when rats predominantly feed. Phentermine and aminorex, which were originally considered to be catecholaminergic drugs,(More)
One approach for protecting neurons from excitotoxic damage in stroke is to attenuate receptor activity with specific antagonists. S-Methyl-N, N-diethylthiocarbamate sulfoxide (DETC-MeSO), the active metabolite of disulfiram, has been shown to be a partial antagonist of glutamate receptors and effective in reducing seizure. First, we investigated(More)
Previously, we have shown that the GABA synthesizing enzyme, L-glutamic acid decarboxylase 65 (GAD65) is cleaved to form its truncated form (tGAD65) which is 2-3 times more active than the full length form (fGAD65). The enzyme responsible for cleavage was later identified as calpain. Calpain is known to cleave its substrates either under a transient(More)
Cocaine and amphetamine-regulated transcript peptides (CART) are implicated in the antidepressant effect. This may involve in 5-hydroxytryptamine (5-HT) in the CNS. The aim of the present studies was to investigate the effect of CART peptides on extracellular 5-HT in the dorsal raphe nucleus (DRN) and nucleus accumbens (NAcc) using a microdialysis approach(More)
The present report using microdialysis approach investigates the neurochemical mechanism of mecamylamine in the regulation of extracellular serotonin in the dorsal raphe nucleus of freely behaving rats. These results suggest that mecamylamine may block serotonin reuptake, the effect consistent with its efficacy of antidepressant.
In spite of the fact that systemic administration of MDMA elicits serotonin syndrome, direct intracranial administration fails to reproduce the effect. To reconcile these findings, it has been suggested that the cause of serotonin syndrome is attributed mainly to MDMA hepatic metabolites, and less likely to MDMA itself. Recently, however, this explanation(More)