Learn More
Wireless sensor networks (WSNs) have been increasingly available for critical applications such as security surveillance and environmental monitoring. An important performance measure of such applications is sensing coverage that characterizes how well a sensing field is monitored by a network. Although advanced collaborative signal processing algorithms(More)
Volcano monitoring is of great interest to public safety and scientific explorations. However, traditional volcanic instrumentation such as broadband seismometers are expensive, power-hungry, bulky, and difficult to install. Wireless sensor networks (WSNs) offer the potential to monitor volcanoes at unprecedented spatial and temporal scales. However,(More)
In this paper, a cooperative localization algorithm is proposed that considers the existence of obstacles in mobilityassisted wireless sensor networks (WSNs). An optimal movement scheduling method with mobile elements (MEs) is proposed to address limitations of static WSNs in node localization. In this scheme, a mobile anchor node cooperates with static(More)
Modern information and communication technologies used by smart grids are subject to cybersecurity threats. This paper studies the impact of integrity attacks on real-time pricing (RTP), a key feature of smart grids that uses such technologies to improve system efficiency. Recent studies have shown that RTP creates a closed loop formed by the mutually(More)
Recent years have witnessed pilot deployments of inexpensive wireless sensor networks (WSNs) for active volcano monitoring. This paper studies the problem of picking arrival times of primary waves (i.e., P-phases) received by seismic sensors, one of the most critical tasks in volcano monitoring. Two fundamental challenges must be addressed. First, it is(More)
Recent years have witnessed the deployments of wireless sensor networks in a class of mission-critical applications such as object detection and tracking. These applications often impose stringent Quality-of-Service requirements including high detection probability, low false alarm rate, and bounded detection delay. Although a dense all-static network may(More)
Software-defined networking (SDN) is an emerging networking paradigm that provides unprecedented flexibility in dynamically reconfiguring an IP network. It enables various applications such as network management, quality of service (QoS) optimization, and system resilience enhancement. Pilot studies have investigated the possibilities of applying SDN on(More)
Wireless sensor networks (WSNs) have been increasingly available for critical applications such as security surveillance and environmental monitoring. An important performance measure of such applications is sensing coverage that characterizes how well a sensing field is monitored by a network. Although advanced collaborative signal processing algorithms(More)
Mission-critical target detection imposes stringent performance requirements for wireless sensor networks, such as high detection probabilities and low false alarm rates. Data fusion has been shown as an effective technique for improving system detection performance by enabling efficient collaboration among sensors with limited sensing capability. Due to(More)
Recent years have seen the growing deployments of Cyber-Physical Systems (CPSs) in many mission-critical applications such as security, civil infrastructure, and transportation. These applications often impose stringent requirements on system sensing fidelity and timeliness. However, existing approaches treat these two concerns in isolation and hence are(More)