Learn More
Short-term synaptic plasticity is highly diverse across brain area, cortical layer, cell type, and developmental stage. Since short-term plasticity (STP) strongly shapes neural dynamics, this diversity suggests a specific and essential role in neural information processing. Therefore, a correct characterization of short-term synaptic plasticity is an(More)
Short-term plasticity (STP) denotes changes in synaptic strength that last up to tens of seconds. It is generally thought that STP impacts information transfer across synaptic connections and may thereby provide neurons with, for example, the ability to detect input coherence, to maintain stability and to promote synchronization. STP is due to a combination(More)
Epilepsy is one of the most frequent neurological disorders. The main method used in epilepsy diagnosis is electroencephalogram (EEG) signal analysis. However this method requires a time-consuming analysis when made manually by an expert due to the length of EEG recordings. This paper proposes an automatic classification system for epilepsy based on neural(More)
Although it is well known that long-term synaptic plasticity can be expressed both pre- and postsynaptically, the functional consequences of this arrangement have remained elusive. We show that spike-timing-dependent plasticity with both pre- and postsynaptic expression develops receptive fields with reduced variability and improved discriminability(More)
Growing experimental evidence shows that both homeostatic and Hebbian synaptic plasticity can be expressed presynaptically as well as postsynaptically. In this review, we start by discussing this evidence and methods used to determine expression loci. Next, we discuss the functional consequences of this diversity in pre- and postsynaptic expression of both(More)
Short-term synaptic plasticity (STP) is highly varied across brain area, cortical layer, cell type, and developmental stage (Reyes & Sakmann 1999). This variability is probably not coincidental and since synaptic dynamics shape neural computations, it suggests an important role of STP in neural information processing (Abbott & Regehr 2004). Therefore, an(More)