Rui-Peng Wang

Learn More
RIG-I and MDA5 are cytoplasmic sensors that recognize different species of viral RNAs, leads to activation of the transcription factors IRF3 and NF-kappaB, which collaborate to induce type I interferons. In this study, we identified REUL, a RING-finger protein, as a specific RIG-I-interacting protein. REUL was associated with RIG-I, but not MDA5, through(More)
Viral infection leads to activation of the transcription factors interferon regulatory factor-3 and NF-kappaB, which collaborate to induce type I IFNs. The RNA helicase proteins RIG-I and MDA5 were recently identified as two cytoplasmic viral RNA sensors that recognize different species of viral RNAs produced during viral replication. In this study, we(More)
Inflammation is a homeostatic mechanism that limits the effects of infectious agents. Tumor necrosis factor (TNF) and interleukin (IL)-1 are two cytokines that induce inflammation through activation of the transcription factor NF-kappaB. Various studies have suggested that two homologous and structurally related adapter proteins TAB2 and TAB3 play redundant(More)
Viral infection causes host cells to produce type I interferons (IFNs), which are critically involved in viral clearance. Previous studies have demonstrated that activation of the transcription factor interferon regulatory factor (IRF)3 is essential for virus-triggered induction of type I IFNs. Here we show that the E3 ubiquitin ligase RBCC protein(More)
Type I interferons (IFNs) are critical mediators of the innate immune system to defend viral infection. Interferon regulatory factor (IRF) 3 and IRF7 are transcription factors that play critical roles in type I IFN production in response to viral infection. It has been shown that the protein kinase I kappaB kinase alpha (IKK alpha) is critically involved in(More)
Plant infection by oomycete pathogens is a complex process. It requires precise expression of a plethora of genes in the pathogen that contribute to a successful interaction with the host. Whereas much effort has been made to uncover the molecular systems underlying this infection process, mechanisms of transcriptional regulation of the genes involved(More)
This paper deals with the fault detection problem for a class of discrete-time networked systems with random delays and disturbance. With the maximum allowable delay, a binary stochastic switching sequence is used to simplify the FDI for NCS. Attention is focused on the design of a fault detection filter, which can be robust for the unknown disturbance. A(More)
  • 1