Rufus Fraanje

Learn More
Wavefront sensorless adaptive optics methodologies are widely considered in scanning fluorescence microscopy where direct wavefront sensing is challenging. In these methodologies, aberration correction is performed by sequentially changing the settings of the adaptive element until a predetermined image quality metric is optimized. An efficient aberration(More)
In many scientific and medical applications, such as laser systems and microscopes, wavefront-sensor-less (WFSless) adaptive optics (AO) systems are used to improve the laser beam quality or the image resolution by correcting the wavefront aberration in the optical path. The lack of direct wavefront measurement in WFSless AO systems imposes a challenge to(More)
An optimal control method to reject turbulence-induced wavefront distortions in an Adaptive Optics system is discussed. Details of a data-driven control approach are presented where the emphasis is put on the estimation of the optimal predictor of the wavefront disturbance. Several algorithms capable of finding the predictor parameters from the sensor(More)
Adaptive Optics (AO) systems are widely used in many scientific and medical applications, such as astronomy, laser systems and microscopes, in order to improve the resolution of the image by actively sensing and compensating the optical aberration in the system. This paper aims at improving the performance of a closed-loop AO system with Piezo-driven(More)