Learn More
fMRI-based adaptation paradigms (fMR-A) have been used to infer neuronal stimulus selectivities in humans. Inferring neuronal selectivities from fMR-A, however, requires an understanding of the relationship between the stimulus selectivity of neuronal adaptation and responses. We studied this relationship by recording single cells in macaque inferior(More)
Perceptual learning is an instance of adult plasticity whereby training in a sensory (e.g., a visual task) results in neuronal changes leading to an improved ability to perform the task. Yet studies in primary visual cortex have found that changes in neuronal response properties were relatively modest. The present study examines the effects of training in(More)
Stereoscopic vision requires the correspondence problem to be solved, i.e., discarding "false" matches between images of the two eyes, while keeping correct ones. To advance our understanding of the underlying neuronal mechanisms, we compared single neuron responses to correlated and anticorrelated random dot stereograms (RDSs). Inferior temporal neurons,(More)
Primates can learn to categorize complex shapes, but as yet it is unclear how this categorization learning affects the representation of shape in visual cortex. Previous studies that have examined the effect of categorization learning on shape representation in the macaque inferior temporal (IT) cortex have produced diverse and conflicting results that are(More)
Recent studies have suggested a profound influence of category learning on visual perception, resulting in independent processing of previously integral dimensions. The authors reinvestigate this issue for shape dimensions. They first extend previous findings that some shape dimensions (aspect ratio and curvature) are processed in a separable way, whereas(More)
Previously several functional magnetic resonance imaging (fMRI) studies point toward the role of perceptual expectations in determining adaptation or repetition suppression (RS) in humans. These studies showed that the probability of repetitions of faces within a block influences the magnitude of adaptation in face-related areas of the human brain(More)
Neurons in the rostral lower bank of the superior temporal sulcus (TEs), part of the inferior temporal cortex, respond selectively to three-dimensional (3D) shapes. We have investigated how these neurons represent disparity-defined 3D structure. Most neurons were selective for either first-order (disparity gradients) or second-order (disparity curvature)(More)
Functional magnetic resonance imaging in awake monkeys and humans was used to compare object adaptation in shape-sensitive regions of these two species under identical and different size conditions. Object adaptation was similar in humans and monkeys under both conditions. Neither species showed complete size invariance, in agreement with single-cell(More)
Neurons in the inferior temporal cortex (IT) of the macaque fire more strongly to some shapes than others, but little is known about how to characterize this shape tuning more generally, because most previous studies have used somewhat arbitrary variations in the stimuli with unspecified magnitudes of the changes. The present investigation studied the(More)
Neurons in the rostral superior temporal sulcus (STS) are responsive to displays of body movements. We employed a parametric action space to determine how similarities among actions are represented by visual temporal neurons and how form and motion information contributes to their responses. The stimulus space consisted of a stick-plus-point-light figure(More)