Learn More
The adult brain shows remarkable plasticity, as demonstrated by the improvement in fine sensorial discriminations after intensive practice. The behavioural aspects of such perceptual learning are well documented, especially in the visual system. Specificity for stimulus attributes clearly implicates an early cortical site, where receptive fields retain fine(More)
Recent findings in dorsal visual stream areas and computational work raise the question whether neurons at the end station of the ventral visual stream can code for stimulus position. The authors provide the first detailed, quantitative data on the spatial sensitivity of neurons in the anterior part of the inferior temporal cortex (area TE) in awake,(More)
In order to relate single cell performance to behavioral discrimination one needs measurements of the response variance of the units. We recorded from 183 single units of area V1 of monkeys performing an orientation discrimination task. The response variance was found to increase with increasing response strength. This relationship between response variance(More)
Behavioral studies with parameterized shapes have shown that the similarities among these complex stimuli can be represented using a low number of dimensions. Using psychophysical measurements and single-cell recordings in macaque inferotemporal (IT) cortex, we found an agreement between low-dimensional parametric configurations of shapes and the(More)
1. Human perceptual learning in discrimination of the oblique orientation was studied using psychophysical methods. Subjects were trained daily to improve their ability to identify the orientation of a circular 2.5 deg diameter unidimensional noise field. Dramatic improvements in sensitivity to contour orientation occurred over a period of 15-20 days. The(More)
fMRI-based adaptation paradigms (fMR-A) have been used to infer neuronal stimulus selectivities in humans. Inferring neuronal selectivities from fMR-A, however, requires an understanding of the relationship between the stimulus selectivity of neuronal adaptation and responses. We studied this relationship by recording single cells in macaque inferior(More)
The perception of shape is independent of the size and position of the shape and also of the visual cue that defines it. The same shape can be recognized whether defined by a difference in luminance, by motion, or by texture. Experiments showed that the shape selectivity of individual cells in the macaque inferior temporal cortex did not vary with the size(More)
Recent human functional magnetic resonance imaging studies (Summerfield C, Trittschuh EH, Monti JM, Mesulam MM, Egner T. 2008. Neural repetition suppression reflects fulfilled perceptual expectations. Nat Neurosci. 11:1004-1006.) showed that adaptation or repetition suppression is affected by contextual factors related to perceptual expectations, suggesting(More)
Human orientation discrimination was measured for single long lines presented sequentially. Orientation sensitivity is better for a narrow range of orientations around the principal meridians. Both the orientation sensitivity and its meridional variation increase with stimulus length. Control experiments show that the "oblique effect" can be obtained as(More)
The perception of a briefly presented shape is strongly impaired when it is followed by another pattern, a phenomenon called backward masking. We found that the vast majority of a sample of shape-selective neurons in the macaque inferior temporal cortex respond selectively to backward-masked shapes, although these shapes could not be discriminated by human(More)