Learn More
A typical gene contains two levels of information: a sequence that encodes a particular protein and a host of other signals that are necessary for the correct expression of the transcript. While much attention has been focused on the effects of sequence variation on the amino acid sequence, variations that disrupt gene processing signals can dramatically(More)
Cell fate decisions of pluripotent embryonic stem (ES) cells are dictated by activation and repression of lineage-specific genes. Numerous signaling and transcriptional networks progressively narrow and specify the potential of ES cells. Whether specific microRNAs help refine and limit gene expression and, thereby, could be used to manipulate ES cell(More)
Dominant mutations in cardiac transcription factor genes cause human inherited congenital heart defects (CHDs); however, their molecular basis is not understood. Interactions between transcription factors and the Brg1/Brm-associated factor (BAF) chromatin remodelling complex suggest potential mechanisms; however, the role of BAF complexes in cardiogenesis(More)
TEL-AML1 (ETV6-RUNX1) is the most common translocation in the childhood leukemias, and is a prenatal mutation in most children. This translocation has been detected at a high rate among newborns ( approximately 1%); therefore, the rate-limiting event for leukemia seems to be secondary mutations. One such frequent mutation in this subtype is partial deletion(More)
BACKGROUND Alternative splicing of exons in a pre-mRNA transcript is an important mechanism which contributes to protein diversity in human. Arrays for detecting alternative splicing are available using several different probe designs, including those based on exon-junctions. In this work, we introduce a new method for predicting alternatively skipped exons(More)
  • 1