Ruei-Zeng Lin

Learn More
Mesenchymal stem cells (MSCs) can generate multiple end-stage mesenchymal cell types and constitute a promising population of cells for regenerative therapies. Additionally, there is increasing evidence supporting other trophic activities of MSCs, including the ability to enable formation of vasculature in vivo. Although MSCs were originally isolated from(More)
MEMS micro-T-switches actuated via electrochemical bubbles for cell sorting applications in a monolithic chip level are proposed and successfully demonstrated. The electrolysis-bubble actuator, which has the features of low operation temperature and high surface-tension force, is developed to actuate the micro-T-switch sorting structure in our device. The(More)
Biomimetic heterogeneous patterning of hepatic and endothelial cells, which start from randomly distributed cells inside the microfluidic chamber, via the chip design of enhanced field-induced dielectrophoresis (DEP) trap is demonstrated and reported in this paper. The concentric-stellate-tip electrode array design in this chip generates radial-pattern(More)
Tumor-associated stroma is typified by a persistent, non-resolving inflammatory response that enhances tumor angiogenesis, growth and metastasis. Inflammation in tumors is instigated by heterotypic interactions between malignant tumor cells, vascular endothelium, fibroblasts, immune and inflammatory cells. We found that tumor-associated adipocytes also(More)
For decades, autologous ex vivo gene therapy has been postulated as a potential alternative to parenteral administration of recombinant proteins. However, achieving effective cellular engraftment of previously retrieved patient cells is challenging. Recently, our ability to engineer vasculature in vivo has allowed for the introduction of instructions into(More)
Blood-derived endothelial colony-forming cells (ECFCs) have robust vasculogenic potential that can be exploited to bioengineer long-lasting human vascular networks in vivo. However, circulating ECFCs are exceedingly rare in adult peripheral blood. Because the mechanism by which ECFCs are mobilized into circulation is currently unknown, the reliability of(More)
The future of tissue engineering and cell-based therapies for tissue regeneration will likely rely on our ability to generate functional vascular networks in vivo. In this regard, the search for experimental models to build blood vessel networks in vivo is of utmost importance. The feasibility of bioengineering microvascular networks in vivo was first shown(More)
  • 1