Learn More
How instructive cues present on the cell surface have their precise effects on the actin cytoskeleton is poorly understood. Semaphorins are one of the largest families of these instructive cues and are widely studied for their effects on cell movement, navigation, angiogenesis, immunology and cancer. Semaphorins/collapsins were characterized in part on the(More)
Different types of cell behavior, including growth, motility, and navigation, require actin proteins to assemble into filaments. Here, we describe a biochemical process that was able to disassemble actin filaments and limit their reassembly. Actin was a specific substrate of the multidomain oxidation-reduction enzyme, Mical, a poorly understood actin(More)
Multiple extracellular signals have been identified that regulate actin dynamics within motile cells, but how these instructive cues present on the cell surface exert their precise effects on the internal actin cytoskeleton is still poorly understood. One particularly interesting class of these cues is a group of extracellular proteins that negatively alter(More)
Actin's polymerization properties are dramatically altered by oxidation of its conserved methionine (Met)-44 residue. Mediating this effect is a specific oxidation-reduction (Redox) enzyme, Mical, that works with Semaphorin repulsive guidance cues and selectively oxidizes Met-44. We now find that this actin regulatory process is reversible. Employing a(More)
  • 1