Learn More
The TrkB receptor tyrosine kinase and its ligand, BDNF, have an essential role in certain forms of synaptic plasticity. However, the downstream pathways required to mediate these functions are unknown. We have studied mice with a targeted mutation in either the Shc or the phospholipase Cgamma (PLCgamma) docking sites of TrkB (trkB(SHC/SHC) and trkB(PLC/PLC)(More)
Brain-derived neurotrophic factor (BDNF) and its receptor TrkB regulate both short-term synaptic functions and long-term potentiation (LTP) of brain synapses, raising the possibility that BDNF/TrkB may be involved in cognitive functions. We have generated conditionally gene targeted mice in which the knockout of the trkB gene is restricted to the forebrain(More)
Chemical synapses contain specialized pre- and postsynaptic structures that regulate synaptic transmission and plasticity. EphB receptor tyrosine kinases are important molecular components in this process. Previously, EphB receptors were shown to act postsynaptically, whereas their transmembrane ligands, the ephrinBs, were presumed to act presynaptically.(More)
Eph family receptor tyrosine kinases have been proposed to control axon guidance and fasciculation. To address the biological functions of the Eph family member Nuk, two mutations in the mouse germline have been generated: a protein null allele (Nuk1) and an allele that encodes a Nuk-beta gal fusion receptor lacking the tyrosine kinase and C-terminal(More)
The EphA4 receptor tyrosine kinase regulates the formation of the corticospinal tract (CST), a pathway controlling voluntary movements, and of the anterior commissure (AC), connecting the neocortical temporal lobes. To study EphA4 kinase signaling in these processes, we generated mice expressing mutant EphA4 receptors either lacking kinase activity or with(More)
Notch signaling is involved in a variety of cell-fate decisions during development. Here we investigate the role of Notch signaling in apoptotic cell death of neural progenitors through the generation and analysis of cell type-specific conditional transgenic and knockout mice. We show that conditional expression of a constitutively active form of Notch1 in(More)
BACKGROUND Patients with Parkinson disease characteristically exhibit an increased echogenicity of the substantia nigra (SN) on transcranial sonography, a new neuroimaging technique. The same echo feature of the SN can be identified in 9% of healthy adults. OBJECTIVE To evaluate the relevance of the echogenic SN in healthy adults. DESIGN In the first(More)
The transmembrane ligand ephrinB2 and its cognate Eph receptor tyrosine kinases are important regulators of embryonic blood vascular morphogenesis. However, the molecular mechanisms required for ephrinB2 transduced cellular signaling in vivo have not been characterized. To address this question, we generated two sets of knock-in mice: ephrinB2DeltaV mice(More)
During development, Eph receptors mediate the repulsive axon guidance function of ephrins, a family of membrane attached ligands with their own receptor-like signaling potential. In cultured glutamatergic neurons, EphB2 receptors were recently shown to associate with NMDA receptors at synaptic sites and were suggested to play a role in synaptogenesis. Here(More)