Rudolf B. Beems

Learn More
Cockayne syndrome (CS) is a photosensitive, DNA repair disorder associated with progeria that is caused by a defect in the transcription-coupled repair subpathway of nucleotide excision repair (NER). Here, complete inactivation of NER in Csb(m/m)/Xpa(-/-) mutants causes a phenotype that reliably mimics the human progeroid CS syndrome. Newborn(More)
Patients carrying mutations in the XPB helicase subunit of the basal transcription and nucleotide excision repair (NER) factor TFIIH display the combined cancer and developmental-progeroid disorder xeroderma pigmentosum/Cockayne syndrome (XPCS). Due to the dual transcription repair role of XPB and the absence of animal models, the underlying molecular(More)
Defects in the xeroderma pigmentosum complementation group A-correcting (XPA) gene, which encodes a component of the nucleotide excision repair (NER) pathway, are associated with the cancer-prone human disease xeroderma pigmentosum. We previously generated mice lacking the XPA gene, which develop normally but are highly sensitive to ultraviolet-B and(More)
DNA repair deficient Xpa-/- and Xpa-/-/p53+/- knock-out mice in a C57BL/6 genetic background, referred to as respectively the XPA and XPA/p53 model, were investigated in the international collaborative research program coordinated by International Life Sciences Institute (ILSI)/Health and Environmental Science Institute. From the selected list of 21 ILSI(More)
Patients with the nucleotide excision repair (NER) disorder xeroderma pigmentosum (XP) are highly predisposed to develop sunlight-induced skin cancer, in remarkable contrast to photosensitive NER-deficient trichothiodystrophy (TTD) patients carrying mutations in the same XPD gene. XPD encodes a helicase subunit of the dually functional DNA repair/basal(More)
Trichothiodystrophy (TTD) patients with a mutation in the XPD gene of nucleotide excision repair (NER) have a short life span and show various features of premature aging, thereby linking DNA damage to the aging process. Xpd(TTD) mutant mice share many features with TTD patients, including a shorter life span, accompanied by a segmental progeroid phenotype.(More)
At present (putative) human carcinogens are identified via epidemiological studies and testing using the chronic 2-yr rodent bioassay. Both methods have severe limitations in that they are slow, insensitive, expensive, and are also hampered by many uncertainties. The development of methods to modify specific genes in the mammalian genome has provided(More)
Phosphorylation is important for p53 protein stabilization and activation after DNA damage. Serine 389 of p53 is specifically phosphorylated after UV irradiation, whereas gamma radiation activates p53 through a different pathway. To study the in vivo significance of p53 phosphorylation at serine 389, we generated a physiological mouse model in which p53(More)
A mouse model for the nucleotide excision repair disorder Cockayne syndrome (CS) was generated by mimicking a truncation in the CSB(ERCC6) gene of a CS-B patient. CSB-deficient mice exhibit all of the CS repair characteristics: ultraviolet (UV) sensitivity, inactivation of transcription-coupled repair, unaffected global genome repair, and inability to(More)
The carcinogenic potential of chemicals and pharmaceuticals is traditionally tested in the chronic, 2 year rodent bioassay. This assay is not only time consuming, expensive and often with a limited sensitivity and specificity but it also causes major distress to the experimental animals. A major improvement in carcinogenicity testing, especially regarding(More)