Learn More
1. The ionic mechanism underlying the fast, GABAA receptor-mediated inhibitory postsynaptic potential (IPSPA) was examined in rat neocortical neurones using intracellular recording techniques. Synaptic responses were evoked by orthodromic stimulation applied to the subcortical white matter or to the pial surface. All experiments were carried out at a(More)
1. The properties of excitatory postsynaptic potentials (EPSPs) of rat neocortical neurons were investigated with a fast single-electrode current-voltage clamp in vitro. Typically, apparently pure EPSPs were obtained by selection of electric stimuli of low intensity. 2. The amplitude and time integral of the EPSP increased when the neuron was depolarized.(More)
Cortical information processing depends crucially upon intrinsic neuronal properties modulating a given synaptic input, in addition to integration of excitatory and inhibitory inputs. These intrinsic mechanisms are poorly understood in sensory cortex areas. We therefore investigated neuronal properties in slices of the auditory cortex (AC) of normal hearing(More)
Cell death induced by tumour-necrosis-factor-related apoptosis-inducing ligand (TRAIL) was believed to occur exclusively in tumour cells, suggesting that this drug is safe to use as an antitumour therapy. Concerns were raised, however, when cultured normal human hepatocytes were shown to be susceptible to TRAIL. Here we report that TRAIL induces apoptosis(More)
Hippocampal inhibitory postsynaptic potentials are depolarizing in granule cells but hyperpolarizing in CA3 neurons because the reversal potentials and membrane potentials of these cells differ. Here the hippocampal slice preparation was used to investigate the role of chloride transport in these inhibitory responses. In both cell types, increasing the(More)
GABA(B) receptor-mediated responses were investigated in human and rat neocortical neurones in vitro by using intracellular recording. Human epileptogenic tissue and cortex from rats were compared for differences related to the cellular mechanisms of hyperexcitability. In both tissues, single stimuli of various intensities were used to compare basic(More)
1. Active and passive factors affecting the chloride gradient of cortical neurons were assessed using intracellular recordings from neurons in slices of cingulate cortex maintained in vitro. The chloride equilibrium potential (ECl-) was estimated indirectly from the reversal potentials of responses to perisomatic gamma-aminobutyric acid (GABA) application(More)
Considerable evidence indicates disturbances in the ionic gradient of GABAA receptor-mediated inhibition of neurones in human epileptogenic tissues. Two contending mechanisms have been proposed, reduced outward and increased inward Cl⁻ transporters. We investigated the properties of Cl⁻ transport in human and rat neocortical neurones (layer II/III) using(More)
Neuronal subthreshold excitability and firing behaviour are markedly influenced by the activation and deactivation of the somato-dendritic hyperpolarization-activated cation current (Ih). Here, we evaluated possible contributions of Ih to hyperexcitability in an animal model of absence seizures (WAG/Rij rats). We investigated pyramidal neurons of the(More)
The effects of gamma-aminobutyric acid (GABA) on calcium currents were investigated in avian dorsal root ganglion (DRG) cells. GABA was applied to the vicinity of the cells by ejection pipettes using constant-pressure pulses. GABA concentrations between 5 and 100 mu M reduced and slowed the calcium current in a dose-dependent manner. A contribution of K and(More)