Learn More
A percutaneous functional neuromuscular stimulation (FNS) system is being developed for restoring function in the lower extremities of spinal cord injured people with lesions between T4 and T11. Limitations of the current system are electrode failure, muscle fatigue, cumbersome electrical hardware, and an inefficient user-machine interface. Transforming(More)
A minimal set of muscles (8 to 16) were identified as candidates for implantation in a clinical system to provide walking function to individuals with complete paraplegia using functional electrical stimulation (FES). Three subjects with complete motor and sensory paraplegia had percutaneous intramuscular electrodes implanted in all major muscles(More)
This study was completed to understand the usage patterns, system performance, degree of satisfaction, complications, and health benefits as perceived by recipients of a surgically implanted neuroprosthesis for exercise, standing, and transfers in individuals with low-cervical or thoracic spinal cord injury (SCI). A standardized telephone survey was(More)
Six individuals with paraplegia and injury levels from C-1 through T-12 participated in a study to evaluate the functional capabilities of a hybrid gait orthotic system. Subjects learned to use a custom-built reciprocal gait orthosis without stimulation and with electrical stimulation activating between 4 and 16 muscles. Outcomes were scored with standard(More)
A hydraulic stance control knee mechanism (SCKM) was developed to fully support the knee against flexion during stance and allow uninhibited motion during swing for individuals with paraplegia using functional neuromuscular stimulation (FNS) for gait assistance. The SCKM was optimized for maximum locking torque for body-weight support and minimum resistance(More)
In paraplegic subjects who had functional transection of the spinal cord at a level between the fourth and the eleventh thoracic vertebra, independent reciprocal walking was achieved with the use of a portable microprocessor-controlled stimulator that electrically activated the muscles through percutaneous intramuscular wire electrodes. The electrodes were(More)
Three partially paralyzed patients were unable to walk even after maximal rehabilitation attempts at a major rehabilitation center. One 36-year-old man had transverse myelitis, a 57-year-old man had had a stroke, and the third patient, a 35-year-old man, had incurred a traumatic brain injury. The three patients were unable to flex the hips, had adductor(More)
A 16-channel functional electrical stimulation (FES) system has been implanted in a person with T10 paraplegia for over a year. The system consists of two eight-channel radio frequency controlled receiver-stimulators delivering stimuli through a network of 14 epimysial and two intramuscular electrodes. Using this system and a walker for support, the subject(More)
Innervated paralyzed muscles have been implanted with temporary percutaneous intramuscular electrodes in order to allow selective stimulation of as many muscles as necessary to achieve a cosmetically acceptable and energy-efficient gait in paraplegic subjects. Fine wire electrodes were implanted under sterile conditions at the motor points (MP) of hip(More)
The influence of stimulus interpulse interval (IPI) on torque output during electrically-evoked contractions was investigated for the knee extensor muscles of paralyzed subjects. The parameters measured were the rise time, magnitude, and relaxation time of the contraction at stimulus IPI's ranging from 62 to 7 ms. Torque output increased as IPI's were(More)