Ruben A. Tikidji-Hamburyan

Learn More
UNLABELLED Gamma oscillations are believed to play a critical role in in information processing, encoding, and retrieval. Inhibitory interneuronal network gamma (ING) oscillations may arise from a coupled oscillator mechanism in which individual neurons oscillate or from a population oscillator in which individual neurons fire sparsely and stochastically.(More)
Simulation of biologically plausible neural models from a single cell to networks usually requires substantial computational resources for numerical solution of differential equations. Various advanced methods to reduce the computational cost but keep an accuracy and effectiveness of solving differential equations are offered and implemented in several(More)
Cross-frequency coupling is hypothesized to play a functional role in neural computation. We apply phase resetting theory to two types of cross-frequency coupling that can occur when a slower oscillator periodically forces one or more oscillators: phase-phase coupling, in which the two oscillations are phase-locked, and phase-amplitude coupling, in which(More)
For localization of a sound source, animals and humans process the microsecond interaural time differences of arriving sound waves. How nervous systems, consisting of elements with time constants of about and more than 1 ms, can reach such high precision is still an open question. In this Letter we present a hypothesis and show theoretical and computational(More)
The establishment of precise neuronal connectivity during development is critical for sensing the external environment and informing appropriate behavioral responses. In the visual system, many connections are organized topographically, which preserves the spatial order of the visual scene. The superior colliculus (SC) is a midbrain nucleus that integrates(More)
We address how feedback to a bursting biological pacemaker with intrinsic variability in cycle length can affect that variability. Specifically, we examine a hybrid circuit constructed of an isolated crab anterior burster (AB)/pyloric dilator (PD) pyloric pacemaker receiving virtual feedback via dynamic clamp. This virtual feedback generates artificial(More)
Sound source localization by the binaural hearing system occurs due to amplitude and time differences between signal arrivals into left and right ears [1]. To localize a sound source with a high resolution, the auditory system has to detect short time delays (STD) which are significantly less than any time constant of individual neural network elements.(More)
The parameter space of neural multi-compartment models is a non-linear complex multidimensional space. Therefore, the problem of parameter fitting for such models is an optimization problem which searches for a solution point in a surface with ravines and mountains. Recent studies [1-4] showed that a genetic algorithm (GA) effectively solves such complex(More)
The synchronization tendencies of networks of oscillators have been studied intensely. We assume a network of all-to-all pulse-coupled oscillators in which the effect of a pulse is independent of the number of oscillators that simultaneously emit a pulse and the normalized delay (the phase resetting) is a monotonically increasing function of oscillator(More)
Interaural time differences (ITDs) in arrival of sound at the two ears are a major cue for sound source localization in the horizontal plane. It is known that to localize a sound, the auditory system must to detect ITDs which are significantly less than any time constant of single neurons [1]. The most prevalent approach that allows ITD detection with such(More)