Rubem Figueiredo Sadok Menna-Barreto

Learn More
SUMMARY In a screening of 65 derivatives of natural quinones using bloodstream trypomastigotes of Trypanosoma cruzi, the 3 naphthoimidazoles derived from beta-lapachone - N1, N2 and N3--were selected as the most active. Investigation of their mode of action led to the characterization of mitochondrion, reservosomes and DNA as their main targets, and(More)
Three naphthoimidazoles presenting aromatic groups attached to the imidazole ring were the most active against trypomastigotes of Trypanosoma cruzi between 45 derivatives from β-lapachone. N1 is active against the three forms of the parasite. In this work, we investigated N2 and N3 and analyzed the effect of the three derivatives on metacyclogenesis,(More)
Autophagy is the degradative process by which eukaryotic cells digest their own components using acid hydrolases within the lysosome. Originally thought to function almost exclusively in providing starving cells with nutrients taken from their own cellular constituents, autophagy is in fact involved in numerous cellular events including differentiation,(More)
OBJECTIVES Investigation of the mode of action of the naphthoimidazole N1, obtained from the reaction of beta-lapachone with benzaldehyde, which among 45 semi-synthetic derivatives of naphthoquinones isolated from Tabebuia sp. was one of the most active compounds against Trypanosoma cruzi trypomastigotes. METHODS Quantification of the effect of N1 against(More)
In the present work, we have investigated the effect of essential oils obtained from Origanum vulgare L. (oregano) and Thymus vulgaris L. (thyme) on growth and ultrastructure of diverse evolutive forms of Trypanosoma cruzi. Culture epimastigotes and bloodstream trypomastigotes were incubated for 24 h with different concentrations of oregano or thyme(More)
Electron microscopy has proven to be a reliable and essential tool to determine morphological alterations and target organelles in the investigation of new drugs for Chagas disease. In this review, we focused on evaluating different agents that induce death of Trypanosoma cruzi, i.e. lysophospholipids analogues, naphthoquinones and derivatives, cytoskeletal(More)
The presence of bacteria in the midgut of mosquitoes antagonizes infectious agents, such as Dengue and Plasmodium, acting as a negative factor in the vectorial competence of the mosquito. Therefore, knowledge of the molecular mechanisms involved in the control of midgut microbiota could help in the development of new tools to reduce transmission. We(More)
Despite ongoing efforts, the current treatment for Chagas disease is still unsatisfactory, mainly because of the severe side effects and variable efficacy of the available nitroheterocycles. Our group has been assaying natural quinones isolated from Brazilian flora, and their derivatives, as alternative chemotherapeutic agents against Trypanosoma cruzi.(More)
BACKGROUND Trypanosoma cruzi is the etiological agent of Chagas' disease. During the parasite life cycle, many molecules are involved in the differentiation process and infectivity. Peptidases are relevant for crucial steps of T. cruzi life cycle; as such, it is conceivable that they may participate in the metacyclogenesis and interaction with the(More)
Clathrin is a scaffold protein found in different types of coated vesicles in most eukaryotic cells. Major forces that drive clathrin coat formation are the adaptor protein complexes. Trypanosoma cruzi is a flagellate protozoan that ingests macromolecules through receptor-mediated endocytosis, but the molecules involved in this process are still poorly(More)