Rubén Braojos

Learn More
Smart Wireless Body Sensor Nodes (WBSNs) are a novel class of unobtrusive, battery-powered devices allowing the continuous monitoring and real-time interpretation of a subject's bio-signals, such as the electrocardiogram (ECG). These low-power platforms, while able to perform advanced signal processing to extract information on heart conditions, are usually(More)
  • Jelena Milosevic, Andreas Dittrich, Alberto Ferrante, Miroslaw Malek, Camilo Rojas Quiros, Rubén Braojos +2 others
  • 2014
We present a methodology for identifying patients who have experienced Paroxysmal Atrial Fibrillation (PAF) among a given subject population. Our work is intended as an initial step towards the design of an unobtrusive portable system for concurrent detection and monitoring of chronic cardiac conditions. The methodology comprises two stages: off-line(More)
—In the last decade, improvements on technology scaling have enabled the design of a novel generation of wearable bio-sensing monitors. These smart Wireless Body Sensor Nodes (WBSNs) are able to acquire and process biological signals, such as electrocardiograms, for periods of time extending from hours to days. The energy required for the on-node digital(More)
—This paper introduces a novel computing architecture devoted to the ultra-low power analysis of multiple bio-signals. Its structure comprises several processors interfaced with a shared acceleration resource, implemented as a Coarse Grained Reconfigurable Array (CGRA). The CGRA supports the efficient execution of the computationally intensive kernels(More)
— Healthcare delivery is evolving towards new Wireless Body Sensor Nodes (WBSN), which are miniaturized devices able to acquire, process and transmit subjects' bio-signals in real time within a tiny energy budget. Recent efforts on AD converters and transmission schemes have enabled a major power consumption reduction of these components, thus leaving the(More)
  • 1