Rubén Braojos

Learn More
Latest embedded bio-signal analysis applications, targeting low-power Wireless Body Sensor Nodes (WBSNs), present conflicting requirements. On one hand, bio-signal analysis applications are continuously increasing their demand for high computing capabilities. On the other hand, long-term signal processing in WBSNs must be provided within their highly(More)
Smart Wireless Body Sensor Nodes (WBSNs) are a novel class of unobtrusive, battery-powered devices allowing the continuous monitoring and real-time interpretation of a subject's bio-signals. One of its most relevant applications is the acquisition and analysis of Electrocardiograms (ECGs). These low-power WBSN designs, while able to perform advanced signal(More)
—Wireless sensor nodes (WSNs) have recently evolved to include a fair amount of computational power, so that advanced signal processing algorithms can now be embedded even in these extremely low-power platforms. An increasingly successful field of application of WSNs is tele-healthcare, which enables continuous monitoring of subjects, even outside a medical(More)
This paper presents the system-level architecture of novel ultra-low power wireless body sensor nodes (WBSNs) for real-time cardiac monitoring and analysis, and discusses the main design challenges of this new generation of medical devices. In particular, it highlights first the unsustainable energy cost incurred by the straightforward wireless streaming of(More)
Embedded biosignal analysis involves a considerable amount of parallel computations, which can be exploited by employing low-voltage and ultra-low-power (ULP) parallel computing architectures. By allowing data and instruction broadcasting, single instruction multiple data (SIMD) processing paradigm enables considerable power savings and application speedup,(More)
Activity recognition has been a research field of high interest over the last years, and it finds application in the medical domain, as well as personal healthcare monitoring during daily home- and sports-activities. With the aim of producing minimum discomfort while performing supervision of subjects, miniaturized networks of low-power wireless nodes are(More)
Smart Wireless Body Sensor Nodes (WBSNs) are a novel class of unobtrusive, battery-powered devices allowing the continuous monitoring and real-time interpretation of a subject's bio-signals, such as the electrocardiogram (ECG). These low-power platforms, while able to perform advanced signal processing to extract information on heart conditions, are usually(More)
Wireless body sensor nodes (WBSNs) are miniaturized devices that are able to acquire, process and transmit bio-signals (such as electrocardiograms, respiration or human-body kinetics). WBSNs face major design challenges due to extremely limited power budgets and very small form factors. We demonstrate, for the first time in the literature, the use of(More)
—In the last decade, improvements on technology scaling have enabled the design of a novel generation of wearable bio-sensing monitors. These smart Wireless Body Sensor Nodes (WBSNs) are able to acquire and process biological signals, such as electrocardiograms, for periods of time extending from hours to days. The energy required for the on-node digital(More)
—This paper introduces a novel computing architecture devoted to the ultra-low power analysis of multiple bio-signals. Its structure comprises several processors interfaced with a shared acceleration resource, implemented as a Coarse Grained Reconfigurable Array (CGRA). The CGRA supports the efficient execution of the computationally intensive kernels(More)