Learn More
The protooncogene bcl-2 inhibits neuronal apoptosis during normal brain development as well as that induced by cytotoxic drugs or growth factor deprivation. We have previously demonstrated that neurons of mice deficient in Bcl-2 are more susceptible to neurotoxins and that the dopamine (DA) level in the striatum after systemic 1-methyl-4-phenyl-1,2,3,6(More)
Serotonin (5-HT) plays a major role at the spinal level by modulating most spinal functions through several receptor subtypes including the 5-HT2A receptor. To gain further insight into the cellular role of this receptor, we performed an immunocytochemical study of 5-HT2A receptors in the rat spinal cord, at light and electron microscope levels. The results(More)
Several lines of evidence suggest that descending serotoninergic facilitatory pathways are involved in neuropathic pain. These pathways may involve 5-HT2A receptors known to play a role in spinal and peripheral sensitization. The implication of this receptor in neuropathy was investigated in a model of peripheral neuropathy induced by 2',3'-dideoxycytidine,(More)
Light microscopic evidence suggested a synaptic role for agmatinase, an enzyme capable of inactivating the putative neurotransmitter and endogenous anti-depressant agmatine. Using electron microscopy and an alternative pre-embedding approach referred to as virtual pre-embedding, agmatinase was localised pre- and postsynaptically, to dendritic spines, spine(More)
In recent years, a neuroimmunomodulatory role for 1,25-dihydroxyvitamine D(3) [1,25(OH)(2)D(3)] has emerged. Microglial cells present a potential target for the effects of this hormone in the brain. This study focuses on the effect of 1,25(OH)(2)D(3) on the expression and production of inflammatory cytokines and nitric oxide (NO) by the EOC13 microglial(More)
In neurons, the selective translocation of Tau mRNA toward axons is due to the presence of a nucleotide sequence located in its 3' untranslated region and serving as axonal targeting element. Using this RNA sequence as a probe by a Northwestern approach, we have detected several proteins that interact with the targeting RNA element and could potentially be(More)
Bax, a family member of the survival protein Bcl-2, is expressed in the nervous system during development and throughout adulthood. Bax deficiency has been demonstrated to prevent developmental and trophic factor deprivation-induced neuronal death. To further clarify the role of Bax in naturally occurring neuronal death and in neuronal death following(More)
The lateral habenular complex (LHb) is a key signal integrator between limbic forebrain regions and monoaminergic hindbrain nuclei. Major projections of LHb neurons target the dopaminergic ventral tegmental area (VTA) and the serotonergic dorsal (DR) and median raphe nuclei (MnR). Both monoaminergic neurotransmitter systems play a central role in reward(More)
Cultures of oligodendrocyte progenitor cells, ERD 1.1 cells, a nontransformed immortalized cell line of oligodendrocyte progenitors and C6 glioma cells were labeled with the fluorescent dye Fast Blue and transplanted into brains of 4 day postnatal Wistar rat pups. The localization of fluorescent cells within host brain was examined at various times(More)
Bcl-2 is a crucial regulator of cell survival and death. We have recently demonstrated that transgenic mice overexpressing the human Bcl-2 protein specifically in their neurons have an increased number of neuronal cells which can survive in tissue culture in the absence of neurotrophic factors. In order to understand why only some neurons can be rescued(More)