Learn More
We report a virus-based scaffold for the synthesis of single-crystal ZnS, CdS, and freestanding chemically ordered CoPt and FePt nanowires, with the means of modifying substrate specificity through standard biological methods. Peptides (selected through an evolutionary screening process) that exhibit control of composition, size, and phase during(More)
The highly organized structure of M13 bacteriophage was used as an evolved biological template for the nucleation and orientation of semiconductor nanowires. To create this organized template, peptides were selected by using a pIII phage display library for their ability to nucleate ZnS or CdS nanocrystals. The successful peptides were expressed as pVIII(More)
Semiconductor nanocrystals, which have unique optical and electronic properties, have potential for applications in the emerging field of nanoelectronics. To produce nanocrystals cheaply and efficiently, biological methods of synthesis are being explored. We found that E. coli, when incubated with cadmium chloride and sodium sulfide, have the capacity to(More)
2'-Fluoro-2'-deoxyuridine 3'-phosphate (dU(F)MP) and arabinouridine 3'-phosphate (araUMP) have non-natural furanose rings. dU(F)MP and araUMP were prepared by chemical synthesis and found to have three- to sevenfold higher affinity than uridine 3'-phosphate (3'-UMP) or 2'-deoxyuridine 3'-phosphate (dUMP) for ribonuclease A (RNase A). These differences(More)
One barrier to the construction of nanoscale devices is the ability to place materials into 2D- and 3D-ordered arrays by controlling the assembly and ordering of connections between nanomaterials. Ordered assembly of nanoscale materials may potentially be achieved using biological tools that direct specific connections between individual components.(More)
  • 1