Roy Schwartz

Learn More
Dependency parsing is a central task in the field of Natural Language Processing (NLP). The task involves the automatic labeling of natural language sentences with dependency structures, such that each word is labeled as the dependent of another word in the sentence (its syntactic head). This formalism is important, both in the linguistic aspect (Mel’čuk,(More)
We present a novel word level vector representation based on symmetric patterns (SPs). For this aim we automatically acquire SPs (e.g., “X and Y”) from a large corpus of plain text, and generate vectors where each coordinate represents the cooccurrence in SPs of the represented word with another word of the vocabulary. Our representation has three(More)
Work on authorship attribution has traditionally focused on long texts. In this work, we tackle the question of whether the author of a very short text can be successfully identified. We use Twitter as an experimental testbed. We introduce the concept of an author’s unique “signature”, and show that such signatures are typical of many authors when writing(More)
In recent years, distributional models (DMs) have shown great success in representing lexical semantics. In this work we show that the extent to which DMs represent semantic knowledge is highly dependent on the type of knowledge. We pose the task of predicting properties of concrete nouns in a supervised setting, and compare between learning taxonomic(More)
This paper describes University of Washington NLP’s submission for the Linking Models of Lexical, Sentential and Discourse-level Semantics (LSDSem 2017) shared task—the Story Cloze Task. Our system is a linear classifier with a variety of features, including both the scores of a neural language model and style features. We report 75.2% accuracy on the task.(More)
A writer’s style depends not just on personal traits but also on her intent and mental state. In this paper, we show how variants of the same writing task can lead to measurable differences in writing style. We present a case study based on the story cloze task (Mostafazadeh et al., 2016a), where annotators were assigned similar writing tasks with different(More)
This article describes the benefits of microprocessor (muP) relay performance and its capabilities beyond previous protective relaying technologies. This article also discusses a multiple quality-measurement approach to observing, measuring, and then calculating muP relay reliability and unavailability.
State-of-the-art word embeddings, which are often trained on bag-of-words (BOW) contexts, provide a high quality representation of aspects of the semantics of nouns. However, their quality decreases substantially for the task of verb similarity prediction. In this paper we show that using symmetric pattern contexts (SPs, e.g., “X and Y”) improves word2vec(More)
Classifying nouns into semantic categories (e.g., animals, food) is an important line of research in both cognitive science and natural language processing. We present a minimally supervised model for noun classification, which uses symmetric patterns (e.g., “X and Y”) and an iterative variant of the k-Nearest Neighbors algorithm. Unlike most previous(More)