Learn More
The objective of this study was to compare the ability of clinically available densitometric measurement techniques for evaluating vertebral strength in elderly individuals. Measurements were related to experimentally determined failure strength in the thoracic and lumbar spine. In 127 specimens (82 women and 45 men, age 80 +/- 10 years), dual-energy X-ray(More)
The rat forelimb compression model has been used widely to study bone response to mechanical loading. We used strain gages to assess load sharing between the ulna and radius in the forelimb of adult Fisher rats. We used histology and peripheral quantitative computed tomography (pQCT) to quantify ulnar bone formation 12 days after in vivo fatigue loading.(More)
In this study we explore the hypothesis that estimates of failure loads in the thoracic spine by lumbar dual energy X-ray absorptiometry (DXA) are compromised of skeletal heterogeneity throughout the spine and artifacts of spinal DXA. We studied the correlation between mechanical failure loads of thoracic and lumbar vertebrae, and that of in situ vs. ex(More)
OBJECTIVES This study investigates the long-term changes of the periarticular bone, including cancellous bone and the subchondral plate, in an anterior cruciate ligament (ACL)-transected cat for post-traumatic osteoarthritis (OA). These periarticular bone changes are related to the health of all knee tissues including articular cartilage degeneration and(More)
In locomotion, humans have to deal with irregularities of the ground, i.e., pathways covered with stones, grass, or roots. When they encounter ground with changes in terrain height they seem to use spring-mass dynamics to help passively stabilize their locomotory trajectory. With increasing step heights humans reduce their leg stiffness, but it is as of yet(More)
In locomotion, humans have to deal with changes in ground level like pavement or stairs. When they encounter uneven ground with changes in terrain height, they reduce their angle of attack and leg stiffness on a step. This strategy was found for the single step upward movement. However, are these adjustments the result of a general strategy? In our study we(More)
Up to now, most gait analyses on low back pain concentrate on changes in trunk coordination during walking on a treadmill. Locomotion on uneven ground as well as lower limb changes receives little attention in association with low back pain. The present study focuses on how chronic non-specific low back pain causes modifications in lower limb and trunk(More)
Walking in even the most familiar environment posesses a challenge to humans due to continuously changing surface conditions such as compliance, slip, or level. These changes can be visible or invisible due to camouflage. In order to prevent falling, camouflaged changes in the ground level in particular require a quick response of the locomotor system. For(More)
In locomotion, humans have to deal with irregularities in the ground. When they encounter uneven terrain with changes in vertical height, they adjust the geometry of their legs. Recent investigations have shown that the preactivation of the gastrocnemius muscle (GM) correlates with the ankle angle at touchdown, but it is as of yet unclear why these(More)
OBJECTIVE To quantify early stage microstructural changes of periarticular cancellous bone in a canine anterior cruciate ligament transection model for experimental osteoarthritis. DESIGN Unilateral transection of the anterior cruciate ligament was performed in 10 animals. Bone structure changes were quantified in five animals at 3-week post-transection(More)