Roy A. Nilsen

Learn More
DISCLAIMER: This publication is based on sources and information believed to be reliable, but the AAPM, the authors, and the editors disclaim any warranty or liability based on or relating to the contents of this publication. The AAPM does not endorse any products, manufacturers , or suppliers. Nothing in this publication should be interpreted as implying(More)
Based on the structure of the original helical FDK algorithm, a three-dimensional (3D)-weighted cone beam filtered backprojection (CB-FBP) algorithm is proposed for image reconstruction in volumetric CT under helical source trajectory. In addition to its dependence on view and fan angles, the 3D weighting utilizes the cone angle dependency of a ray to(More)
The original FDK algorithm proposed for cone beam (CB) image reconstruction under a circular source trajectory has been extensively employed in medical and industrial imaging applications. With increasing cone angle, CB artefacts in images reconstructed by the original FDK algorithm deteriorate, since the circular trajectory does not satisfy the so-called(More)
The spatial resolution of diagnostic Computed Tomography (CT) has increased substantially, and 3D isotropic sub-millimeter spatial resolution in both axial and helical scan modes is routinely available in the clinic. However, driven by advanced clinical applications, the pursuit for higher spatial resolution and free of aliasing artifacts in diagnostic CT(More)
A three-dimensional (3D) weighted helical cone beam filtered backprojection (CB-FBP) algorithm (namely, original 3D weighted helical CB-FBP algorithm) has already been proposed to reconstruct images from the projection data acquired along a helical trajectory in angular ranges up to [0, 2 π]. However, an overscan is usually employed in the clinic to(More)
A 3D weighting scheme have been proposed previously to reconstruct images at both helical and axial scans in stat-of-the-art volumetric CT scanners for diagnostic imaging. Such a 3D weighting can be implemented in the manner of either ray-driven or pixel-drive, depending on the available computation resources. An experimental study is conducted in this(More)
  • 1