Roxanne L Denny

Learn More
Legumes (Fabaceae or Leguminosae) are unique among cultivated plants for their ability to carry out endosymbiotic nitrogen fixation with rhizobial bacteria, a process that takes place in a specialized structure known as the nodule. Legumes belong to one of the two main groups of eurosids, the Fabidae, which includes most species capable of endosymbiotic(More)
Microsatellites are tandemly repeated short DNA sequences that are favored as molecular-genetic markers due to their high polymorphism index. Plant genomes characterized to date exhibit taxon-specific differences in frequency, genomic location, and motif structure of microsatellites, indicating that extant microsatellites originated recently and turn over(More)
Medicago truncatula is a model for investigating legume genetics, including the genetics and evolution of legume-rhizobia symbiosis. We used whole-genome sequence data to identify and characterize sequence polymorphisms and linkage disequilibrium (LD) in a diverse collection of 26 M. truncatula accessions. Our analyses reveal that M. truncatula harbors both(More)
Two cDNA clones were isolated from soybean (Glycine soja) by polymerase chain reaction with primers designed to conserved motifs found in apyrases (nucleotide phosphohydrolase). The two cDNAs are predicted to encode for two, distinct, apyrase proteins of approximately 50 kDa (i.e., GS50) and 52 kDa (i.e., GS52). Phylogenetic analysis indicated that GS52 is(More)
Genome-wide association study (GWAS) has revolutionized the search for the genetic basis of complex traits. To date, GWAS have generally relied on relatively sparse sampling of nucleotide diversity, which is likely to bias results by preferentially sampling high-frequency SNPs not in complete linkage disequilibrium (LD) with causative SNPs. To avoid these(More)
We are building a framework physical infrastructure across the soybean genome by using SSR (simple sequence repeat) and RFLP (restriction fragment length polymorphism) markers to identify BACs (bacterial artificial chromosomes) from two soybean BAC libraries. The libraries were prepared from two genotypes, each digested with a different restriction enzyme.(More)
The sinorhizobia are amongst the most well studied members of nitrogen-fixing root nodule bacteria and contribute substantial amounts of fixed nitrogen to the biosphere. While the alfalfa symbiont Sinorhizobium meliloti RM 1021 was one of the first rhizobial strains to be completely sequenced, little information is available about the genomes of this large(More)
Four putative apyrase genes were identified from the model legume Medicago truncatula. Two of the genes identified from M. truncatula (Mtapy1 and Mtapy4) are expressed in roots and are inducible within 3 h after inoculation with Sinorhizobium meliloti. The level of mRNA expression of the other two putative apyrases, Mtapy2 and Mtapy3, was unaffected by(More)
Eight DNA markers spanning an interval of approximately 10 centimorgans (cM) on soybean (Glycine max) molecular linkage group G (MLG-G) were used to identify bacterial artificial chromosome (BAC) clones. Twenty-eight BAC clones in eight distinct contiguous groups (contigs) were isolated from this genome region, along with 59 BAC clones on 17 contigs(More)
The genomes of most, if not all, flowering plants have undergone whole genome duplication events during their evolution. The impact of such polyploidy events is poorly understood, as is the fate of most duplicated genes. We sequenced an approximately 1 million-bp region in soybean (Glycine max) centered on the Rpg1-b disease resistance gene and compared(More)