Roxana A. Stefanescu

Learn More
Neural networks consisting of globally coupled excitatory and inhibitory nonidentical neurons may exhibit a complex dynamic behavior including synchronization, multiclustered solutions in phase space, and oscillator death. We investigate the conditions under which these behaviors occur in a multidimensional parametric space defined by the connectivity(More)
Neuronal oscillations and cross-frequency interactions in the rat hippocampus relate in important ways to memory processes and serve as a model for studying oscillatory activity in cognition more broadly. We report here that hippocampal synchrony (CA3-CA1 coherence) increased markedly in the low gamma range as rats were exploring novel objects, particularly(More)
Large scale brain networks are understood nowadays to underlie the emergence of cognitive functions, though the detailed mechanisms are hitherto unknown. The challenges in the study of large scale brain networks are amongst others their high dimensionality requiring significant computational efforts, the complex connectivity across brain areas and the(More)
PURPOSE Approximately 30% of epilepsy patients suffer from medically refractory epilepsy, in which seizures can not controlled by the use of anti-epileptic drugs (AEDs). Understanding the mechanisms underlying these forms of drug-resistant epileptic seizures and the development of alternative effective treatment strategies are fundamental challenges for(More)
In the human brain, large-scale neural networks are considered to instantiate the integrative mechanisms underlying higher cognitive, motor, and sensory functions. Computational models of such large-scale networks typically lump thousands of neurons into a functional unit, which serves as the "atom" for the network integration. These atoms display a low(More)
Interictal spikes (IISs) are spontaneous high amplitude, short time duration <400 ms events often observed in electroencephalographs (EEG) of epileptic patients. In vitro analysis of resected mesial temporal lobe tissue from patients with refractory temporal lobe epilepsy has revealed the presence of IIS in the CA1 subfield. In this paper, we develop a(More)
Channelrhodpsin-2 (ChR2) is a light sensitive ion channel protein currently investigated for millisecond time scale optogenetic control of neural activity [1]. Two competing mathematical models, a 3-state and a 4-state rate transition model are currently available to mimic the ChR2 photocurrent kinetics [2]. While both models are able to capture the key(More)
Channelrhodopsins-2 (ChR2) are a class of light sensitive proteins that offer the ability to use light stimulation to regulate neural activity with millisecond precision. In order to address the limitations in the efficacy of the wild-type ChR2 (ChRwt) to achieve this objective, new variants of ChR2 that exhibit fast mon-exponential photocurrent decay(More)
  • 1