Roustem D. Saiakhov

Learn More
PURPOSE To develop a computational method to rapidly evaluate human intestinal absorption, one of the drug properties included in the term ADME (Absorption, Distribution, Metabolism, Excretion). Poor ADME properties are the most important reason for drug failure in clinical development. METHODS The model developed is based on a modified contribution group(More)
Oral bioavailability (%F) is a key factor that determines the fate of a new drug in clinical trials. Traditionally, %F is measured using costly and time-consuming experimental tests. Developing computational models to evaluate the %F of new drugs before they are synthesized would be beneficial in the drug discovery process. We employed Combinatorial(More)
Purpose of this pilot study is to test the QSAR expert system CASE Ultra for adverse effect prediction of drugs. 870 drugs from the SIDER adverse effect dataset were tested using CASE Ultra for carcinogenicity, genetic, liver, cardiac, renal and reproductive toxicity. 47 drugs that were withdrawn from market since the 1950s were also evaluated for potential(More)
ABSTRACT This article is a review of the MultiCASE Inc. software and expert systems and their use to assess acute toxicity, mutagenicity, carcinogenicity, and other health effects. It is demonstrated that MultiCASE expert systems satisfy the guidelines of the Organisation for Economic Cooperation and Development (OECD) principles and that the portfolio of(More)
Fragment based expert system models of toxicological end points are primarily comprised of a set of substructures that are statistically related to the toxic property in question. These special substructures are often referred to as toxicity alerts, toxicophores, or biophores. They are the main building blocks/classifying units of the model, and it is(More)
We describe here the development of a computer program which uses a new method called Expert System Prediction (ESP), to predict toxic end points and pharmacological properties of chemicals based on multiple modules created by the MCASE artificial intelligence system. The modules are generally based on different biological models measuring related end(More)
The Multiple Computer Automated Structure Evaluation (MCASE) program was used to evaluate the mutagenic potential of organic compounds. The experimental Ames test mutagenic activities for 2513 chemicals were collected from various literature sources. All chemicals have experimental results in one or more Salmonella tester strains. A general mutagenicity(More)
Computational screening is suggested as a way to set priorities for further testing of high production volume (HPV) chemicals for mutagenicity and other toxic endpoints. Results are presented for batch screening of 2484 HPV chemicals to predict their mutagenicity in Salmonella typhimurium (Ames test). The chemicals were tested against 15 databases for(More)
Our goal was to create a photodegradation model based on the META expert system [G. Klopman, M. Dimayuga, J. Talafous, J. Chem. Inf. Comput. Sci. 34 (1994a) 1320-1325]. This requires the development of a dictionary of photodegradation pathways. Equipped with such a dictionary, we found that META successfully predicts degradation pathways of organic(More)
  • 1