Learn More
Endoplasmic reticulum (ER) stress is a key link between obesity, insulin resistance, and type 2 diabetes. Here, we provide evidence that this mechanistic link can be exploited for therapeutic purposes with orally active chemical chaperones. 4-Phenyl butyric acid and taurine-conjugated ursodeoxycholic acid alleviated ER stress in cells and whole animals.(More)
The hnRNPs (heterogeneous nuclear ribonucleoproteins) are RNA-binding proteins with important roles in multiple aspects of nucleic acid metabolism, including the packaging of nascent transcripts, alternative splicing and translational regulation. Although they share some general characteristics, they vary greatly in terms of their domain composition and(More)
Specific neuronal mRNAs are localized in dendrites, often concentrated in dendritic spines and spine synapses, where they are translated. The molecular mechanism of localization is mostly unknown. Here we have explored the roles of A2 response element (A2RE), a cis-acting signal for oligodendrocyte RNA trafficking, and its cognate trans-acting factor,(More)
Trafficking of mRNA molecules from the nucleus to distal processes in neural cells is mediated by heterogeneous nuclear ribonucleoprotein (hnRNP) A2/B1 trans-acting factors. Although hnRNP A2/B1 is alternatively spliced to generate four isoforms, most functional studies have not distinguished between these isoforms. Here, we show, using isoform-specific(More)
The hnRNP A/B proteins are among the most abundant RNA-binding proteins, forming the core of the ribonucleoprotein complex that associates with nascent transcripts in eukaryotic cells. There are several paralogs in this subfamily, each of which is subject to alternative transcript splicing and post-translational modifications. The structural diversity of(More)
The heterogeneous nuclear ribonucleoproteins (hnRNPs) A/B are a family of RNA-binding proteins that participate in various aspects of nucleic acid metabolism, including mRNA trafficking, telomere maintenance, and splicing. They are both regulators and targets of alternative splicing, and the patterns of alternative splicing of their transcripts have(More)
The heterogeneous nuclear ribonucleoprotein (hnRNP) A2 is a multi-tasking protein that acts in the cytoplasm and nucleus. We have explored the possibility that this protein is associated with telomeres and participates in their maintenance. Rat brain hnRNP A2 was shown to have two nucleic acid binding sites. In the presence of heparin one site binds(More)
Overexpression of heterogeneous nuclear ribonucleoproteins (hnRNPs) A2 and B1 has been observed in a variety of tumour types, however, it is unknown whether this dysregulation is a consequence of, or a driving force for, unregulated cell proliferation. We have shown that the levels of hnRNPs A1, A2 and B1, but not A3, are modulated during the cell cycle of(More)
Largely owing to widespread deployment of microarray analysis, many of the transcriptional events associated with invasive cell migration are becoming clear. However, the transcriptional drives to invasive migration are likely modified by alternative splicing of pre-mRNAs to produce functionally distinct patterns of protein expression. Heterogenous nuclear(More)