Ross H. McKenzie

Learn More
Penrose and Hameroff have argued that the conventional models of a brain function based on neural networks alone cannot account for human consciousness, claiming that quantum-computation elements are also required. Specifically, in their Orchestrated Objective Reduction (Orch OR) model [R. Penrose and S. R. Hameroff, J. Conscious. Stud. 2, 99 (1995)], it is(More)
We report first-principles density-functional calculations for hydroquinone (HQ), indolequinone (IQ), and semiquinone (SQ). These molecules are believed to be the basic building blocks of the eumelanins, a class of biomacromolecules with important biological functions (including photoprotection) and with the potential for certain bioengineering(More)
We give a theoretical treatment of the interaction of electronic excitations (excitons) in biomolecules and quantum dots with the surrounding polar solvent. Significant quantum decoherence occurs due to the interaction of the electric dipole moment of the solute with the fluctuating electric dipole moments of the individual molecules in the solvent. We(More)
A biomolecular chromophore can be viewed as a quantum system with a small number of degrees of freedom interacting with an environment (the surrounding protein and solvent) which has many degrees of freedom, the majority of which can be described classically. The system-environment interaction can be described by a spectral density for a spin-boson model.(More)
If a deuterated molecule containing strong intramolecular hydrogen bonds is placed in a hydrogenated solvent, it may preferentially exchange deuterium for hydrogen. This preference is due to the difference between the vibrational zero-point energy for hydrogen and deuterium. It is found that the associated fractionation factor Φ is correlated with the(More)
We investigate the problem of teleporting an unknown qubit state to a recipient via a channel of 2L qubits. In this procedure a protocol is employed whereby L Bell state measurements are made and information based on these measurements is sent via a classical channel to the recipient. Upon receiving this information the recipient determines a local gate(More)
We show that the quantum decoherence of Förster resonant energy transfer between two optically active molecules can be described by a spin-boson model. This allows us to give quantitative criteria, in terms of experimentally measurable system parameters, that are necessary for coherent Bloch oscillations of excitons between the chromophores. Experimental(More)
We show that the Korringa ratio, associated with nuclear magnetic resonance in metals, is unity if vertex corrections to the dynamic spin susceptibility are negligible, the hyperfine coupling is momentum independent, and there exists an energy scale below which the density of states is constant. In the absence of vertex corrections we also find a Korringa(More)
  • 1