Ross Graham

Learn More
Iron abnormalities within the brain are associated with several rare but severe neurodegenerative conditions. There is growing evidence that more common systemic iron loading disorders such as hemochromatosis can also have important effects on the brain. To identify features that are common across different forms of hemochromatosis, we used microarray and(More)
Severe disruption of brain iron homeostasis can cause fatal neurodegenerative disease, however debate surrounds the neurologic effects of milder, more common iron loading disorders such as hereditary hemochromatosis, which is usually caused by loss-of-function polymorphisms in the HFE gene. There is evidence from both human and animal studies that HFE gene(More)
While Illumina microarrays can be used successfully for detecting small gene expression changes due to their high degree of technical replicability, there is little information on how different normalization and differential expression analysis strategies affect outcomes. To evaluate this, we assessed concordance across gene lists generated by applying(More)
One of the greatest challenges in the design of realistic Artificial Intelligence (AI) in computer games is agent movement. Pathfinding strategies are usually employed as the core of any AI movement system. This report will highlight pathfinding algorithms used presently in games and their shortcomings especially when dealing with real-time pathfinding.(More)
One of the greatest challenges in the design of realistic Artificial Intelligence (AI) in computer games is agent movement. Pathfinding strategies are usually employed as the core of any AI movement system. The two main components for basic real-time pathfinding are (i) travelling towards a specified goal and (ii) avoiding dynamic and static obstacles that(More)
One of the greatest challenges in the design of realistic Artificial Intelligence (AI) in computer games is agent movement. Pathfinding strategies are usually employed as the core of any AI movement system. This paper examines pathfinding algorithms used presently in games and details their shortcomings. These shortcomings are particularly apparent when(More)
Iron abnormalities are observed in the brains of Alzheimer's disease (AD) patients, but it is unclear whether common disorders of systemic iron overload such as hemochromatosis alter risks of AD. We used microarrays and real-time reverse transcription-PCR to investigate changes in the brain transcriptome of adult Hfe-/- mice, a model of hemochromatosis,(More)
BACKGROUND/AIMS Transferrin receptor 2 appears to have dual roles in iron metabolism; one is signalling, the other is iron transport. It is sensitive to high levels of diferric transferrin, which is associated with disorders of iron overload. Also present in these disorders are increased levels of plasma non-transferrin-bound iron. This study sought to(More)
The 'neurodegeneration with brain iron accumulation' (NBIA) disease family entails movement or cognitive impairment, often with psychiatric features. To understand how iron loading affects the brain, we studied mice with disruption of two iron regulatory genes, hemochromatosis (Hfe) and transferrin receptor 2 (Tfr2). Inductively coupled plasma atomic(More)
We previously demonstrated elevated brain iron levels in myelinated structures and associated cells in a hemochromatosis Hfe (-/-) xTfr2 (mut) mouse model. This was accompanied by altered expression of a group of myelin-related genes, including a suite of genes causatively linked to the rare disease family 'neurodegeneration with brain iron accumulation'(More)