Learn More
Recent developments in polymer microstructured optical fibres allow for the realisation of microstructures in fibres that would be problematic to fabricate using glass-based capillary stacking. We present one class of such structures, where the holes lie on circular rings. A fibre of this type is fabricated and shown to be single moded for relatively long(More)
We describe a multipole formulation that can be used for high-accuracy calculations of the full complex propagation constant of a microstructured optical fiber with a finite number of holes. We show how the imaginary part of the microstructure, which describes confinement losses not associated with absorption, varies with hole size, the number of rings of(More)
The first microstructured polymer optical fibre is described. Both experimental and theoretical evidence is presented to establish that the fibre is effectively single moded at optical wavelengths. Polymer-based microstructured optical fibres offer key advantages over both conventional polymer optical fibres and glass microstructured fibres. The low-cost(More)
A method is developed to calculate electromagnetic properties of arrays of metallic and dielectric cylinders. It incorporates and exploits cylindrical boundary conditions and Rayleigh identities for efficient, high-accuracy calculation of scattering off individual layers that are stacked into arrays using scattering matrices. The method enables absorption,(More)
The most intense colours displayed in nature result from either multilayer reflectors or linear diffraction gratings. Here we investigate the spectacular iridescence of a spine (notoseta) from the sea mouse Aphrodita sp. (Polychaeta: Aphroditidae). The spine normally appears to be deep red in colour, but when light is incident perpendicular to the axis of(More)
Solutions for the fields in a coated cylinder where the core radius is bigger than the shell radius are seemingly unphysical, but can be given a physical meaning if one transforms to an equivalent problem by unfolding the geometry. In particular the unfolded material can act as an impedance matched hyperlens, and as the loss in the lens goes to zero finite(More)
A sinusoidal silver grating is used to create a six-fold enhancement of the SPR response compared to a flat surface. The grating parameters are chosen to create a surface plasmon bandgap and it is shown that the enhancement of the sensitivity to bulk sample index occurs when operating near the bandgap. The Kretschmann configuration is considered and the(More)
We consider the coupling into a slow mode that appears near an inflection point in the band structure of a photonic crystal waveguide. Remarkably, the coupling into this slow mode, which has a group index ng>1000, can be essentially perfect without any transition region. We show that this efficient coupling occurs thanks to an evanescent mode in the slow(More)
Discrete systems of infinitely long polarizable line dipoles are considered in the quasistatic limit, interacting with a two-dimensional cloaking system consisting of a hollow plasmonic cylindrical shell. A numerical procedure is described for accurately calculating electromagnetic fields arising in the quasistatic limit, for the case when the relative(More)
The electromagnetic transmittance of disordered two-dimensional photonic crystals composed of circular cylinders is investigated as a function of wavelength and polarization. At short wavelengths, the transmittance shows a band structure similar to that found in the optical absorption spectrum of amorphous semiconductors, with impurity states increasingly(More)