Ross C. McPhedran

Learn More
The first microstructured polymer optical fibre is described. Both experimental and theoretical evidence is presented to establish that the fibre is effectively single moded at optical wavelengths. Polymer-based microstructured optical fibres offer key advantages over both conventional polymer optical fibres and glass microstructured fibres. The low-cost(More)
We describe a multipole formulation that can be used for high-accuracy calculations of the full complex propagation constant of a microstructured optical fiber with a finite number of holes. We show how the imaginary part of the microstructure, which describes confinement losses not associated with absorption, varies with hole size, the number of rings of(More)
Recent developments in polymer microstructured optical fibres allow for the realisation of microstructures in fibres that would be problematic to fabricate using glass-based capillary stacking. We present one class of such structures, where the holes lie on circular rings. A fibre of this type is fabricated and shown to be single moded for relatively long(More)
A sinusoidal silver grating is used to create a six-fold enhancement of the SPR response compared to a flat surface. The grating parameters are chosen to create a surface plasmon bandgap and it is shown that the enhancement of the sensitivity to bulk sample index occurs when operating near the bandgap. The Kretschmann configuration is considered and the(More)
We show that efficient coupling between fast and slow photonic crystal waveguide modes is possible, provided that there exist strong evanescent modes to match the waveguide fields across the interface. Evanescent modes are required when the propagating modes have substantially different modal fields, which occurs, for example, when coupling an index-guided(More)
Solutions for the fields in a coated cylinder where the core radius is bigger than the shell radius are seemingly unphysical, but can be given a physical meaning if one transforms to an equivalent problem by unfolding the geometry. In particular, the unfolded material can act as an impedance matched hyperlens, and as the loss in the lens goes to zero finite(More)
The symmetry of an optical waveguide determines its modal degeneracies. A fiber with rotational symmetry of order higher than 2 has modes that either are nondegenerate and support the complete fiber symmetry or are twofold degenerate pairs of lower symmetry. The latter case applies to the fundamental modes of perfect microstructured optical fibers,(More)
Using the exact theory of multipole expansions, we construct the two-dimensional Green's function for photonic crystals, consisting of a finite number of circular cylinders of infinite length. From this Green's function, we compute the local density of states (LDOS), showing how the photonic crystal affects the radiation properties of an infinite(More)
The most intense colours displayed in nature result from either multilayer reflectors or linear diffraction gratings. Here we investigate the spectacular iridescence of a spine (notoseta) from the sea mouse Aphrodita sp. (Polychaeta: Aphroditidae). The spine normally appears to be deep red in colour, but when light is incident perpendicular to the axis of(More)
We analyze the nature of modal cutoff in microstructured optical fibers of finite cross section. In doing so, we reconcile the striking endlessly single-mode behavior with the fact that in such fibers all propagation constants are complex. We show that the second mode undergoes a strong change of behavior that is reflected in the losses, effective area, and(More)