Learn More
In this paper we study the problem of recovering a low-rank matrix from linear measurements. Our algorithm, which we call Procrustes Flow, starts from an initial estimate obtained by a thresholding scheme followed by gradient descent on a non-convex objective. We show that as long as the measurements obey a standard restricted isometry property, our(More)
The theory of integral quadratic constraints (IQCs) allows verification of stability and gain-bound properties of systems containing nonlinear or uncertain elements. Gain bounds often imply exponential stability, but it can be challenging to compute useful numerical bounds on the exponential decay rate. In this work, we present a modification of the(More)
The theory of integral quadratic constraints (IQCs) allows verification of stability and gain-bound properties of systems containing nonlinear or uncertain elements. Gain bounds often imply exponential stability, but it can be challenging to compute useful numerical bounds on the exponential decay rate. This work presents a generalization of the classical(More)
In 2009, 15.2 million vehicles were recalled in the United States, and of those, 1.3 million were recalled by General Motors due to software issues alone. This recall resulted in more than 136 million dollars in losses for the firm. There is a need to remotely diagnose, update and certify automotive software for efficient recall and safety management. This(More)
This work explores the trade-off between the number of samples required to accurately build models of dynamical systems and the degradation of performance in various control objectives due to a coarse approximation. In particular, we show that simple models can be easily fit from input/output data and are sufficient for achieving various control objectives.(More)
  • 1