• Publications
  • Influence
Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks
TLDR
This work introduces a Region Proposal Network (RPN) that shares full-image convolutional features with the detection network, thus enabling nearly cost-free region proposals and further merge RPN and Fast R-CNN into a single network by sharing their convolutionAL features.
Fast R-CNN
  • Ross B. Girshick
  • Computer Science, Environmental Science
    IEEE International Conference on Computer Vision…
  • 29 April 2015
This paper proposes a Fast Region-based Convolutional Network method (Fast R-CNN) for object detection. Fast R-CNN builds on previous work to efficiently classify object proposals using deep
Rich Feature Hierarchies for Accurate Object Detection and Semantic Segmentation
TLDR
This paper proposes a simple and scalable detection algorithm that improves mean average precision (mAP) by more than 30% relative to the previous best result on VOC 2012 -- achieving a mAP of 53.3%.
You Only Look Once: Unified, Real-Time Object Detection
TLDR
Compared to state-of-the-art detection systems, YOLO makes more localization errors but is less likely to predict false positives on background, and outperforms other detection methods, including DPM and R-CNN, when generalizing from natural images to other domains like artwork.
Mask R-CNN
TLDR
This work presents a conceptually simple, flexible, and general framework for object instance segmentation that outperforms all existing, single-model entries on every task, including the COCO 2016 challenge winners.
Feature Pyramid Networks for Object Detection
TLDR
This paper exploits the inherent multi-scale, pyramidal hierarchy of deep convolutional networks to construct feature pyramids with marginal extra cost and achieves state-of-the-art single-model results on the COCO detection benchmark without bells and whistles.
Caffe: Convolutional Architecture for Fast Feature Embedding
TLDR
Caffe provides multimedia scientists and practitioners with a clean and modifiable framework for state-of-the-art deep learning algorithms and a collection of reference models for training and deploying general-purpose convolutional neural networks and other deep models efficiently on commodity architectures.
Focal Loss for Dense Object Detection
TLDR
This paper proposes to address the extreme foreground-background class imbalance encountered during training of dense detectors by reshaping the standard cross entropy loss such that it down-weights the loss assigned to well-classified examples, and develops a novel Focal Loss, which focuses training on a sparse set of hard examples and prevents the vast number of easy negatives from overwhelming the detector during training.
Object Detection with Discriminatively Trained Part Based Models
We describe an object detection system based on mixtures of multiscale deformable part models. Our system is able to represent highly variable object classes and achieves state-of-the-art results in
Aggregated Residual Transformations for Deep Neural Networks
TLDR
On the ImageNet-1K dataset, it is empirically show that even under the restricted condition of maintaining complexity, increasing cardinality is able to improve classification accuracy and is more effective than going deeper or wider when the authors increase the capacity.
...
1
2
3
4
5
...