Ross B. Mikkelsen

Learn More
Transient generation of reactive oxygen or nitrogen (ROS/RNS), detected with dihydrodichlorofluoroscein by fluorescence microscopy, occurs within minutes of exposing cells to ionizing radiation. In the 1-10 Gy dose range, the amount of ROS/RNS produced/cell is constant, but the percentage of producing cells increases with dose (20 to 80%). Reversible(More)
In the past few years, nuclear DNA damage-sensing mechanisms activated by ionizing radiation have been identified, including ATM/ATR and the DNA-dependent protein kinase. Less is known about sensing mechanisms for cytoplasmic ionization events and how these events influence nuclear processes. Several studies have demonstrated the importance of cytoplasmic(More)
Accelerated cellular repopulation has been described as a response of tumors to fractionated irradiation in both normal tissue and tumor systems. To identify the mechanisms by which cells enhance their proliferative rate in response to clinically used doses of ionizing radiation (IR) we have studied human mammary and squamous carcinoma cells which are(More)
Ionizing radiation at clinical dose levels activates both pro- and anti-proliferative signal transduction pathways, the balance of which determines cell fate. The initiating and amplifying mechanisms involved in the activation are poorly understood. We demonstrate that one mechanism involves stimulation of constitutive nitric-oxide synthase (NOS) activity.(More)
Ionizing radiation activates the epidermal growth factor receptor (EGFR) and downstream signaling involving the cytoprotective mitogen-activated protein kinase (MAPK) pathway. In our effort to investigate the role of EGFR in cellular responses to radiation, we generated mammary carcinoma cell clones, MCF-TR5-EGFR-CD533 and MDA-TR15-EGFR-CD533, that(More)
Previous studies have shown that a Ca(2+)-dependent nitric-oxide synthase (NOS) is activated as part of a cellular response to low doses of ionizing radiation. Genetic and pharmacological inhibitor studies linked this NO signaling to the radiation-induced activation of ERK1/2. Herein, a mechanism for the radiation-induced activation of Tyr(More)
Activation of the epidermal growth receptor (ErbB1) occurs within minutes of a radiation exposure. Immediate downstream consequences of this activation are currently indistinguishable from those obtained with growth factors (GF), e.g. stimulation of the pro-proliferative mitogen-activated protein kinase (MAPK). To identify potential differences, the effects(More)
Exposure of MDA-MB-231 human mammary carcinoma cells to an ionizing radiation dose of 2 Gy results in immediate activation and Tyr phosphorylation of the epidermal growth factor receptor (EGFR). Doxycycline induced expression of a dominant negative EGFR-CD533 mutant, lacking the COOH-terminal 533 amino acids, in MDA-TR15-EGFR-CD533 cells was used to(More)
In this study we have investigated the effects of low dose ionizing radiation (2 Gy) on p70 S6 kinase and Akt signaling with respect to Erb-B receptors in both the A431 squamous and the MDA-MB-231 mammary carcinoma cell lines. Ionizing radiation caused a 2-3-fold increase in p70 S6 kinase activity that was blocked pharmacologically using an EGFR inhibitor(More)
The NF-kappaB family of transcription factors is an important component of stress-activated cytoprotective signal transduction pathways. Previous studies demonstrated that some activation mechanisms require phosphorylation, ubiquitination, and degradation of the inhibitor protein, IkappaBalpha. Herein, it is demonstrated that ionizing radiation in the(More)