Learn More
The DNA binding and ATPase activities of RecF protein are modulated by RecR protein. Stoichiometric amounts of RecF protein bind to double-stranded (ds) DNA (about 1 RecF monomer/4-6 base pairs) in the presence of adenosine 5'-O-(3-thio)triphosphate (ATP gamma S), forming a homogeneous protein coating on the DNA. Little or no cooperativity is evident in the(More)
The Escherichia coli RecF, RecO and RecR pro teins have previously been implicated in bacterial recombinational DNA repair at DNA gaps. The RecOR-facilitated binding of RecA protein to single-stranded DNA (ssDNA) that is bound by single-stranded DNA-binding protein (SSB) is much faster if the ssDNA is linear, suggesting that a DNA end (rather than a gap)(More)
The Escherichia coli RecF protein possesses a weak ATP hydrolytic activity. ATP hydrolysis leads to RecF dissociation from double-stranded (ds)DNA. The RecF protein is subject to precipitation and an accompanying inactivation in vitro when not bound to DNA. A mutant RecF protein that can bind but cannot hydrolyze ATP (RecF K36R) does not readily dissociate(More)
RecA protein filaments formed on circular (ssDNA) in the presence of ssDNA binding protein (SSB) are generally stable as long as ATP is regenerated. On linear ssDNA, stable RecA filaments are believed to be formed by nucleation at random sites on the DNA followed by filament extension in the 5' to 3' direction. This view must now be enlarged as we(More)
RecA protein forms filaments on both single- and double-stranded DNA. Several studies confirm that filament extension occurs in the 5' to 3' direction on single-stranded DNA. These filaments also disassemble in an end-dependent fashion, and several indirect observations suggest that the disassembly occurs on the end opposite to that at which assembly(More)
KaiC from Synechococcus elongatus PCC 7942 (KaiC) is an essential circadian clock protein in cyanobacteria. Previous sequence analyses suggested its inclusion in the RecADnaB superfamily. A characteristic of the proteins of this superfamily is that they form homohexameric complexes that bind DNA. We show here that KaiC also forms ring complexes with a(More)
Replacement of lysine 72 in RecA protein with arginine produces a mutant protein that binds but does not hydrolyze ATP. The protein nevertheless promotes DNA strand exchange (Rehrauer, W. M., and Kowalczykowski, S. C. (1993) J. Biol. Chem. 268, 1292-1297). With RecA K72R protein, the formation of the hybrid DNA product of strand exchange is greatly affected(More)
The RecX protein is a potent inhibitor of RecA protein activities. RecX functions by specifically blocking the extension of RecA filaments. In vitro, this leads to a net disassembly of RecA protein from circular single-stranded DNA. Based on multiple observations, we propose that RecX has a RecA filament capping activity. This activity has predictable(More)
Xp10 is a lytic bacteriophage of the phytopathogenic bacterium Xanthomonas oryzae. Though morphologically Xp10 belongs to the Syphoviridae family, it encodes its own single-subunit RNA polymerase characteristic of T7-like phages of the Podoviridae family. Here, we report the determination and analysis of the 44,373 bp sequence of the Xp10 genome. The genome(More)