Ross B. Inman

Learn More
KaiC from Synechococcus elongatus PCC 7942 (KaiC) is an essential circadian clock protein in cyanobacteria. Previous sequence analyses suggested its inclusion in the RecADnaB superfamily. A characteristic of the proteins of this superfamily is that they form homohexameric complexes that bind DNA. We show here that KaiC also forms ring complexes with a(More)
RecA protein filaments formed on circular (ssDNA) in the presence of ssDNA binding protein (SSB) are generally stable as long as ATP is regenerated. On linear ssDNA, stable RecA filaments are believed to be formed by nucleation at random sites on the DNA followed by filament extension in the 5' to 3' direction. This view must now be enlarged as we(More)
The Escherichia coli RecF, RecO and RecR pro teins have previously been implicated in bacterial recombinational DNA repair at DNA gaps. The RecOR-facilitated binding of RecA protein to single-stranded DNA (ssDNA) that is bound by single-stranded DNA-binding protein (SSB) is much faster if the ssDNA is linear, suggesting that a DNA end (rather than a gap)(More)
The DNA binding and ATPase activities of RecF protein are modulated by RecR protein. Stoichiometric amounts of RecF protein bind to double-stranded (ds) DNA (about 1 RecF monomer/4-6 base pairs) in the presence of adenosine 5'-O-(3-thio)triphosphate (ATP gamma S), forming a homogeneous protein coating on the DNA. Little or no cooperativity is evident in the(More)
Polydnaviruses (PDVs) are distinguished by their unique association with parasitoid wasps and their segmented, double-stranded (ds) DNA genomes that are non-equimolar in abundance. Relatively little is actually known, however, about genome packaging or segment abundance of these viruses. Here, we conducted electron microscopy (EM) and real-time polymerase(More)
In the presence of both the RecF and RecR proteins, RecA filament extension from a single strand gap into adjoining duplex DNA is attenuated. RecR protein alone has no effect, and RecF protein alone has a reduced activity. The RecFR complexes bind randomly, primarily to the duplex regions of the DNA, and the extension of the RecA filament is halted at the(More)
The RecX protein inhibits RecA filament extension, leading to net filament disassembly. The RecF protein physically interacts with the RecX protein and protects RecA from the inhibitory effects of RecX. In vitro, efficient RecA filament formation onto single-stranded DNA binding protein (SSB)-coated circular single-stranded DNA (ssDNA) in the presence of(More)
A118 is a temperate phage isolated from Listeria monocytogenes. In this study, we report the entire nucleotide sequence and structural analysis of its 40 834 bp DNA. Electron microscopic and enzymatic analyses revealed that the A118 genome is a linear, circularly permuted, terminally redundant collection of double-stranded DNA molecules. No evidence for(More)
RecA protein forms filaments on both single- and double-stranded DNA. Several studies confirm that filament extension occurs in the 5' to 3' direction on single-stranded DNA. These filaments also disassemble in an end-dependent fashion, and several indirect observations suggest that the disassembly occurs on the end opposite to that at which assembly(More)
The RecX protein is a potent inhibitor of RecA protein activities. RecX functions by specifically blocking the extension of RecA filaments. In vitro, this leads to a net disassembly of RecA protein from circular single-stranded DNA. Based on multiple observations, we propose that RecX has a RecA filament capping activity. This activity has predictable(More)