Learn More
Immunoglobulin E (IgE) is a heterodimeric glycoprotein involved in antiparasitic and allergic immune reactions. IgE glycosylation is known to exhibit significant interindividual variation, and several reports have indicated its relevance in determining IgE activity. Here, we present site-specific glycosylation analysis of IgE from three different sources:(More)
Immunoglobulin G (IgG) is one of the most abundant proteins present in human serum and a fundamental component of the immune system. IgG3 represents ∼8% of the total amount of IgG in human serum and stands out from the other IgG subclasses because of its elongated hinge region and enhanced effector functions. This study reports partial O-glycosylation of(More)
The biological and clinical relevance of glycosylation is becoming increasingly recognized, leading to a growing interest in large-scale clinical and population-based studies. In the past few years, several methods for high-throughput analysis of glycans have been developed, but thorough validation and standardization of these methods is required before(More)
This study investigated the impact of sleep deprivation on the human circadian system. Plasma melatonin and cortisol levels and leukocyte expression levels of 12 genes were examined over 48 h (sleep vs. no-sleep nights) in 12 young males (mean±SD: 23±5 yrs). During one night of total sleep deprivation, BMAL1 expression was suppressed, the heat shock gene(More)
The analysis of N- and O-glycopeptides remains challenging due to the microheterogeneity (different glycoforms attached to one glycosylation site) and macroheterogeneity (site occupancy) of the glycoprotein. Trypsin is by far the most commonly used protease in glycoproteomic studies; however, it often results in long peptides that can harbor more than one(More)
Immunoglobulin G (IgG) mediates its immune functions through complement and cellular IgG-Fc receptors (FcγR). IgG contains an evolutionary conserved N-linked glycan at position Asn297 in the Fc-domain. This glycan consists of variable levels of fucose, galactose, sialic acid, and bisecting N-acetylglucosamine (bisection). Of these variations, the lack of(More)
It has been reported that glycosylation can influence the proteolytic cleavage of proteins. A thorough investigation of this phenomenon was conducted for the serine protease trypsin, which is essential in many proteomics workflows. Monoclonal and polyclonal immunoglobulin G biopharmaceuticals were employed as model substances, which are highly relevant for(More)
Key Points • Phagocytosis of IgG-opsonized blood cells by human macrophages is inhibited by intravenous immunoglobulins. • This inhibition is independent of IgG-Fc sialylation but improves with IgG preparations that bind FcgRs more avidly. In immune thrombocytopenia and warm autoimmune hemolytic anemia, circulating immunoglobulin G (IgG)-opsonized blood(More)
In immune thrombocytopenia and warm autoimmune hemolytic anemia, circulating immunoglobulin G (IgG)-opsonized blood cells are cleared from the circulation by macrophages. Administration of intravenous immunoglobulin (IVIg) can prevent uptake, but the exact working mechanism is not known. The prevailing theory from murine studies, which states that(More)
Glycosylation is an abundant co- and post-translational protein modification of importance to protein processing and activity. Although not template-defined, glycosylation does reflect the biological state of an organism and is a high-potential biomarker for disease and patient stratification. However, to interpret a complex but informative sample like the(More)