Learn More
The transcription factors OCT4, SOX2, and NANOG have essential roles in early development and are required for the propagation of undifferentiated embryonic stem (ES) cells in culture. To gain insights into transcriptional regulation of human ES cells, we have identified OCT4, SOX2, and NANOG target genes using genome-scale location analysis. We found,(More)
Polycomb group proteins are essential for early development in metazoans, but their contributions to human development are not well understood. We have mapped the Polycomb Repressive Complex 2 (PRC2) subunit SUZ12 across the entire nonrepeat portion of the genome in human embryonic stem (ES) cells. We found that SUZ12 is distributed across large portions of(More)
Pluripotent stem cells (PSCs) are capable of dynamic interconversion between distinct substates; however, the regulatory circuits specifying these states and enabling transitions between them are not well understood. Here we set out to characterize transcriptional heterogeneity in mouse PSCs by single-cell expression profiling under different chemical and(More)
We used a combination of genome-wide and promoter-specific DNA binding and expression analyses to assess the functional roles of Myod and Myog in regulating the program of skeletal muscle gene expression. Our findings indicate that Myod and Myog have distinct regulatory roles at a similar set of target genes. At genes expressed throughout the program of(More)
Control of gene expression during development requires the concerted action of sequence-specific transcriptional regulators and epigenetic modifiers, which are spatially coordinated within the nucleus through mechanisms that are poorly understood. Here we show that transcriptional repression by the Msx1 homeoprotein in myoblast cells requires the(More)
Fully-connected triads (FCTs), such as the Oct4-Sox2-Nanog triad, have been implicated as recurring transcriptional motifs embedded within the regulatory networks that specify and maintain cellular states. To explore the possible connections between FCT topologies and cell fate determinations, we employed computational network screening to search all(More)
A surprising portion of both mammalian and Drosophila genomes are transcriptionally paused, undergoing initiation without elongation. We tested the hypothesis that transcriptional pausing is an obligate transition state between definitive activation and silencing as human embryonic stem cells (hESCs) change state from pluripotency to mesoderm. Chromatin(More)
Extracellular stimuli induce gene expression responses through intracellular signaling mediators. The p38 signaling pathway is a paradigm of the mitogen-activated protein kinase (MAPK) family that, although originally identified as stress-response mediator, contributes to establishing stem cell differentiation fates. p38α is central for induction of the(More)
SUMMARY Users may view, print, copy, and download text and data-mine the content in such documents, for the purposes of academic research, subject always to the full Conditions of use:Seq and single-cell RNA-Seq experiments. R.S. helped to analyze the ChIP-Seq and single-cell RNA-Seq data. A.D. performed experiments and helped to analyze the data. H.L.(More)