Rosemary L Kanasty

Learn More
RNA interference (RNAi) has broad potential as a therapeutic to reversibly silence any gene. To achieve the clinical potential of RNAi, delivery materials are required to transport short interfering RNA (siRNA) to the site of action in the cells of target tissues. This Review provides an introduction to the biological challenges that siRNA delivery(More)
Gene-based therapy is the intentional modulation of gene expression in specific cells to treat pathological conditions. This modulation is accomplished by introducing exogenous nucleic acids such as DNA, mRNA, small interfering RNA (siRNA), microRNA (miRNA) or antisense oligonucleotides. Given the large size and the negative charge of these macromolecules,(More)
RNA interference (RNAi)-based therapeutics have significant potential for the treatment of human disease. Safe and effective delivery of RNA to target tissues remains a major barrier to realizing its clinical potential. Several factors can affect the in vivo performance of short interfering RNA (siRNA) delivery formulations, including siRNA sequence,(More)
The functionality of natural biopolymers has inspired significant effort to develop sequence-defined synthetic polymers for applications including molecular recognition, self-assembly, and catalysis. Conjugation of synthetic materials to biomacromolecules has played an increasingly important role in drug delivery and biomaterials. We developed a controlled(More)
  • 1