Rosemarie Weikard

Learn More
To understand the biology and evolution of ruminants, the cattle genome was sequenced to about sevenfold coverage. The cattle genome contains a minimum of 22,000 genes, with a core set of 14,345 orthologs shared among seven mammalian species of which 1217 are absent or undetected in noneutherian (marsupial or monotreme) genomes. Cattle-specific evolutionary(More)
A cattle genetic linkage map was constructed which covers more than 95 percent of the bovine genome at medium density. Seven hundred and forty six DNA polymorphisms were genotyped in cattle families which comprise 347 individuals in full sibling pedigrees. Seven hundred and three of the loci are linked to at least one other locus. All linkage groups are(More)
Deep RNA sequencing (RNAseq) has opened a new horizon for understanding global gene expression. The functional annotation of non-model mammalian genomes including bovines is still poor compared to that of human and mouse. This particularly applies to tissues without direct significance for milk and meat production, like skin, in spite of its multifunctional(More)
Several studies in a variety of breeds have reported at least two QTL for milk production traits, including milk fat synthesis on bovine chromosome 6 (BTA6), comprising a region that comparatively has been mapped to equivalent syntenic chromosome intervals in human, pig, and mouse harboring loci associated with type II diabetes and obesity-related traits.(More)
The recently constructed river buffalo whole-genome radiation hybrid panel (BBURH5000) has already been used to generate preliminary radiation hybrid (RH) maps for several chromosomes, and buffalo-bovine comparative chromosome maps have been constructed. Here, we present the first-generation whole genome RH map (WG-RH) of the river buffalo generated from(More)
The increasing evidence of fetal developmental effects on postnatal life, the still unknown fetal growth mechanisms impairing offspring generated by somatic nuclear transfer techniques, and the impact on stillbirth and dystocia in conventional reproduction have generated increasing attention toward mammalian fetal growth. We identified a highly significant(More)
Interval mapping was carried out to identify quantitative trait loci (QTL) for milk production traits in five granddaughter design families of the German Holstein population. Fourteen randomly generated markers spanning the whole of BTA6 and six targeted microsatellite markers from BTA6q21-31 were included in the analysis. In one family a QTL with effects(More)
Substantial gene substitution effects on milk production traits have formerly been reported for alleles at the K232A and the promoter VNTR loci in the bovine acylCoA-diacylglycerol-acyltransferase 1 (DGAT1) gene by using data sets including sires with accumulated phenotypic observations of daughters (breeding values, daughter yield deviations). However,(More)
Identifying trait-associated genetic variation offers new prospects to reveal novel physiological pathways modulating complex traits. Taking advantage of a unique animal model, we identified the I442M mutation in the non-SMC condensin I complex, subunit G (NCAPG) gene and the Q204X mutation in the growth differentiation factor 8 (GDF8) gene as substantial(More)
Sex-specific sequence variability of the amelogenin gene had been observed in a variety of mammalian species. In our study, the suitability of the amelogenin gene for sex determination in different species of the family Bovidae was examined. Based on a sequence insertion/deletion characteristic for X- and Y-specific amelogenin (AMELX and AMELY), PCR(More)