Rose T. Faghih

Learn More
We study the use of the FitzHugh-Nagumo (FHN) model for capturing neural spiking. The FHN model is a widely used approximation of the Hodgkin-Huxley model that has significant limitations. In particular, it cannot produce the key spiking behavior of bursting. We illustrate that by allowing time-varying parameters for the FHN model, these limitations can be(More)
The pulsatile release of cortisol from the adrenal glands is controlled by a hierarchical system that involves corticotropin releasing hormone (CRH) from the hypothalamus, adrenocorticotropin hormone (ACTH) from the pituitary, and cortisol from the adrenal glands. Determining the number, timing, and amplitude of the cortisol secretory events and recovering(More)
Existing mathematical models for cortisol secretion do not describe the entire cortisol secretion process, from the neural firing of corticotropin releasing hormone (CRH) in the hypothalamus to cortisol concentration in the plasma. In this paper, we lay the groundwork to construct a more comprehensive model, relating CRH, Adrenocorticotropic hormone (ACTH),(More)
An important question in neuroscience is understanding the relationship between high-dimensional electrophysiological data and complex, dynamic behavioral data. One general strategy to address this problem is to define a low-dimensional representation of essential cognitive features describing this relationship. Here we describe a general state-space method(More)
Electrodermal activity (EDA) is a measure of physical arousal, which is frequently measured during psychophysical tasks relevant for anxiety disorders. Recently, specific protocols and procedures have been devised in order to examine the neural mechanisms of fear conditioning and extinction. EDA reflects important responses associated with stimuli(More)
Cortisol is released to relay information to cells to regulate metabolism and reaction to stress and inflammation. In particular, cortisol is released in the form of pulsatile signals. This low-energy method of signaling seems to be more efficient than continuous signaling. We hypothesize that there is a controller in the anterior pituitary that leads to(More)
Pulsatile release of cortisol from the adrenal glands is governed by pulsatile release of adrenocorticotropic hormone (ACTH) from the anterior pituitary. In return, cortisol has a negative feedback effect on ACTH release. Simultaneous recording of ACTH and cortisol is not typical, and determining the number, timing, and amplitudes of pulsatile events from(More)
  • 1