Learn More
Excitation-emission matrixes (EEMs) of 379 dissolved organic matter (DOM) samples from diverse aquatic environments were modeled by parallel factor analysis (PARAFAC). Thirteen components likely representing groups of similarly fluorescing moieties were found to explain the variation in this data set. Seven of the thirteen components were identified as(More)
To study the effects of complex environmental media on silver nanoparticle (AgNP) toxicity, AgNPs were added to microcosms with freshwater sediments and two species of aquatic plants (Potamogeton diversifolius and Egeria densa), followed by toxicity testing with microcosm surface water. Microcosms were designed with four environmental matrices in order to(More)
The influence of hyporheic zone interactions on the redox state of fulvic acids and other redox active species was investigated in an alpine stream and adjacent wetland, which is a more reducing environment. A tracer injection experiment using bromide (Br-) was conducted in the stream system. Simulations with a transport model showed that rates of exchange(More)
Although wetlands are known to be important sources of dissolved organic matter (DOM) within watersheds, production of DOM within wetlands is not well understood. In the Okavango Delta, a large wetland located in Botswana, large amounts of DOM produced in the wetland are transported in the river network and to the subsurface. The purpose of this study was(More)
We evaluated whether fitting fluorescence excitation-emission matrices (EEMs) to a previously validated PARAFAC model is an acceptable alternative to building an original model. To do this, we built a 10-component model using 307 EEMs collected from southeast Alaskan soil and streamwater. All 307 EEMs were then fit to the existing model (CM) presented in(More)
Recent climate change has increased arctic soil temperatures and thawed large areas of permafrost, allowing for microbial respiration of previously frozen C. Furthermore, soil destabilization from melting ice has caused an increase in thermokarst failures that expose buried C and release dissolved organic C (DOC) to surface waters. Once exposed, the fate of(More)
Carbon in thawing permafrost soils may have global impacts on climate change; however, the factors that control its processing and fate are poorly understood. The dominant fate of dissolved organic carbon (DOC) released from soils to inland waters is either complete oxidation to CO2 or partial oxidation and river export to oceans. Although both processes(More)
The McMurdo Dry Valleys of Antarctica contain many permanently ice-covered lakes that support populations of algae and bacteria in the water column. In these lakes the concentration of dissolved organic carbon (DOC) is typically greatest at depth. In Lake Fryxell, the DOC concentration is 25 mg C/L at 18 m and 5 mg C/L at 5 m, just below the ice-cover.(More)
Dissolved organic matter (DOM) is a significant (>700 Pg) global C pool. Transport of terrestrial DOM to the inland waters and coastal zones represents the largest flux of reduced C from land to water (215 Tg yr(-1)) (Meybeck, M. Am. J. Sci. 1983, 282, 401-450). Oxidation of DOM by interdependent photochemical and biochemical processes largely controls the(More)
A multiyear field study was undertaken on Lake Superior to investigate singlet oxygen ((1)O(2)) photoproduction. Specifically, trends within the lake were examined, along with an assessment of whether correlations existed between chromophoric dissolved organic matter (CDOM) characteristics and (1)O(2) production rates and quantum yields. Quantum yield(More)