Learn More
Diffusion tensor MRI (DT-MRI) provides information about the structural organization and orientation of white matter fibres and, through the technique of 'tractography', reveals the trajectories of cerebral white matter tracts. We used tractography in the living human brain to address the disputed issue of the nature of occipital and temporal connections.(More)
S100B belongs to a multigenic family of Ca(2+)-binding proteins of the EF-hand type and is expressed in high abundance in the brain. S100B interacts with target proteins within cells thereby altering their functions once secreted/released with the multiligand receptor RAGE. As an intracellular regulator, S100B affects protein phosphorylation, energy(More)
Besides exerting regulatory roles within astrocytes, the Ca2+-modulated protein of the EF-hand type S100B is released into the brain extracellular space, thereby affecting astrocytes, neurons, and microglia. However, extracellular effects of S100B vary, depending on the concentration attained and the protein being trophic to neurons up to nanomolar(More)
S100A1 and S100B are members of a multigenic family of Ca(2+)-binding proteins of the EF-hand type highly abundant in astrocyte and striated muscle cells that have been implicated in the Ca(2+)-dependent regulation of several intracellular activities including the assembly and disassembly of microtubules and type III intermediate filaments. In the present(More)
Invasive aspergillosis (IA) is a major threat to the successful outcome of hematopoietic stem cell transplantation (HSCT), although individual risk varies considerably. Recent evidence has established a pivotal role for a danger sensing mechanism implicating the S100B/receptor for advanced glycation end products (RAGE) axis in antifungal immunity. The(More)
The Ca2(+)-binding proteins of the EF-hand type, S100B and S100A1, were detected in the outer segment of bovine retina photoreceptors where they are localized to disc membranes, as investigated by immunofluorescence and immunogold cytochemistry. S100B and S100A1 stimulate a membrane-bound guanylate cyclase activity associated with photoreceptor disc(More)
S100 calcium binding protein has been associated with a variety of intra- and extracellular calcium-mediated functions, including learning and memory. We have previously localized S100-immunoreactive neurons correlated with spontaneous discharge activity in the central nervous system of the mollusc, Helix pomatia. In this study, we further investigated the(More)
Hippocampal slices have been widely used to investigate electrophysiological and metabolic neuronal parameters, as well as parameters of astroglial activity including protein phosphorylation and glutamate uptake. S100B is an astroglial-derived protein, which extracellularly plays a neurotrophic activity during development and excitotoxic insult. Herein, we(More)
Extracellular S100B is known to affect astrocytic, neuronal and microglial activities, with different effects depending on its concentration. Whereas at relatively low concentrations S100B exerts trophic effects on neurons and astrocytes, at relatively high concentrations the protein causes neuronal apoptosis and activates astrocytes and microglia, thus(More)
Nitric oxide (NO) release upon microglial cell activation has been implicated in the tissue injury and cell death in many neurodegenerative diseases. Recent studies have indicated the ability of interferon-gamma (IFNgamma) and lipopolysaccharides (LPS) to independently induce type II nitric oxide synthase (iNOS) expression and NO production in BV-2(More)