Learn More
As clinical trials of pharmacological neuroprotective strategies in stroke have been disappointing, attention has turned to the brain's own endogenous strategies for neuroprotection. Recently, a hypothesis has been offered that modified reperfusion subsequent to a prolonged ischemic episode may also confer ischemic neuroprotection, a phenomenon termed(More)
BACKGROUND AND PURPOSE The sodium-calcium exchanger NCX1 represents a key mediator for maintaining [Na(+)](i) and [Ca(2+)](i) in anoxic conditions. To date, no information is available on NCX1 protein expression and activity in microglial cells under ischemic conditions. METHODS By means of Western blotting, patch-clamp electrophysiology, single-cell(More)
BACKGROUND AND PURPOSE The Na+/Ca2+ exchanger, by mediating Ca2+ and Na+ fluxes in a bidirectional way across the synaptic plasma membrane, may play a pivotal role in the events leading to anoxic damage. In the brain, there are 3 different genes coding for 3 different proteins: NCX1, NCX2, and NCX3. The aim of this study was to determine whether NCX1, NCX2,(More)
Several recent studies suggest that sumo-2/3 modification of proteins occurs following harmful ischemia, however, sumo-2/3-ylation may also be associated with hibernation-mediated neuroprotection. Here we investigate the sumoylation of proteins following ischemia and ischemic tolerance using our established in vitro model of ischemia (oxygen and glucose(More)
Central nervous system regions were examined in long term ovariectomized rats to determine if they are involved in the estrogen-induced afternoon surge in plasma PRL. Adult female rats were ovariectomized 2-3 weeks before bilateral radiofrequency or electrolytic lesions of the brain were placed on day 0. In short term lesion studies, catheterizations and sc(More)
Na+/Ca+ exchanger 3 (NCX3), one of the three isoforms of the NCX family, is highly expressed in the brain and is involved in the maintenance of intracellular Na+ and Ca2+ homeostasis. Interestingly, whereas the function of NCX3 under physiological conditions has been determined, its role under anoxia is still unknown. To assess NCX3 role in cerebral(More)
The superfamily of cation/Ca2+ plasma-membrane exchangers contains two branches, the K+-independent Na+-Ca2+ exchangers (NCXs) and the K+-dependent Na+-Ca2+ exchangers (NCKXs), widely expressed in mammals. NCKX2 is the major neuronally expressed isoform among NCKX members. Despite its importance in maintaining Na+, Ca2+, and K+ homeostasis in the CNS, the(More)
Dysregulation of sodium [Na+]i and calcium [Ca2+]i homeostasis plays a pivotal role in the pathophysiology of cerebral ischemia. Three gene products of the sodium-calcium exchanger family NCX1, NCX2, and NCX3 couple, in a bidirectional way, the movement of these ions across the cell membrane during cerebral ischemia. Each isoform displays a selective(More)
Sodium/calcium exchangers are neuronal plasma membrane transporters, which by coupling Ca2+ and Na+ fluxes, may play a relevant role in brain ischemia. The exchanger gene superfamily comprises two arms: the K+-independent (NCX) and K+-dependent (NCKX) exchangers. In the brain, three different NCX (NCX1, NCX2, NCX3) and three NCKX (NCKX2, NCKX3, NCKX4)(More)