Learn More
Epileptic seizure prediction has steadily evolved from its conception in the 1970s, to proof-of-principle experiments in the late 1980s and 1990s, to its current place as an area of vigorous, clinical and laboratory investigation. As a step toward practical implementation of this technology in humans, we present an individualized method for selecting(More)
Mechanisms underlying seizure generation are traditionally thought to act over seconds to minutes before clinical seizure onset. We analyzed continuous 3- to 14-day intracranial EEG recordings from five patients with mesial temporal lobe epilepsy obtained during evaluation for epilepsy surgery. We found localized quantitative EEG changes identifying(More)
A signal feature with low computational burden is presented as an efficient tool for seizure onset detection. The feature was evaluated over a total of 1,215 hours of intracranial EEG signal from 10 patients. Results confirmed this feature as being useful for seizure onset detection yielding an average delay of 4.1 seconds, 0.051 false positives per hour,(More)
Brief bursts of focal, low amplitude rhythmic activity have been observed on depth electroencephalogram (EEG) in the minutes before electrographic onset of seizures in human mesial temporal lobe epilepsy. We have found these periods to contain discrete, individualized synchronized activity in patient-specific frequency bands ranging from 20 to 40 Hz. We(More)
OBJECTIVE Increases in accumulated energy on intracranial EEG are associated with oncoming seizures in retrospective studies, supporting the idea that seizures are generated over time. Published seizure prediction methods require comparison to 'baseline' data, sleep staging, and selecting seizures that are not clustered closely in time. In this study, we(More)
OBJECTIVE To develop a prospective method for optimizing seizure prediction, given an array of implanted electrodes and a set of candidate quantitative features computed at each contact location. METHODS The method employs a genetic-based selection process, and then tunes a probabilistic neural network classifier to predict seizures within a 10 min(More)