Rosalynn C. Molden

Learn More
Several types of pediatric cancers reportedly contain high-frequency missense mutations in histone H3, yet the underlying oncogenic mechanism remains poorly characterized. Here we report that the H3 lysine 36-to-methionine (H3K36M) mutation impairs the differentiation of mesenchymal progenitor cells and generates undifferentiated sarcoma in vivo. H3K36M(More)
Histone variants are isoforms of linker and core histone proteins that differ in their amino acid sequences. These variants have distinct genomic locations and posttranslational modifications, thus increasing the complexity of the chromatin architecture. Biological studies of histone variants indicate that they play a role in many processes including(More)
RNA performs important cellular functions in contemporary life forms. Its ability to act both as a catalyst and a storage mechanism for genetic information is also an important part of the RNA world hypothesis. Compartmentalization within modern cells allows the local concentration of RNA to be controlled and it has been suggested that this was also(More)
Histone post-translational modifications contribute to chromatin function through their chemical properties which influence chromatin structure and their ability to recruit chromatin interacting proteins. Nanoflow liquid chromatography coupled with high resolution tandem mass spectrometry (nanoLC-MS/MS) has emerged as the most suitable technology for global(More)
Viral proteins mimic host protein structure and function to redirect cellular processes and subvert innate defenses. Small basic proteins compact and regulate both viral and cellular DNA genomes. Nucleosomes are the repeating units of cellular chromatin and play an important part in innate immune responses. Viral-encoded core basic proteins compact viral(More)
Histones are chromatin proteins that are highly modified with many different types of post-translational modifications. These modifications act in concert to regulate a number of chromatin-related processes. However, identification and quantification of co-occurring histone post-translational modifications is challenging because there are many potential(More)
Histone isoforms and their post-translational modifications (PTMs) play an important role in the control of many chromatin-related processes including transcription and DNA damage. Variants of histones H2A and H3 have been studied in depth and have been found to have distinct functions. Although 13 somatic histone H2B isoforms have been identified by(More)
MS-based proteomics has become the most utilized tool to characterize histone PTMs. Since histones are highly enriched in lysine and arginine residues, lysine derivatization has been developed to prevent the generation of short peptides (<6 residues) during trypsin digestion. One of the most adopted protocols applies propionic anhydride for derivatization.(More)
Signals that control responses to stimuli and cellular function are transmitted through the dynamic phosphorylation of thousands of proteins by protein kinases. Many techniques have been developed to study phosphorylation dynamics, including several mass spectrometry (MS)-based methods. Over the past few decades, substantial developments have been made in(More)
Protein phosphorylation, one of the most common and important modifications of acute and reversible regulation of protein function, plays a dominant role in almost all cellular processes. These signaling events regulate cellular responses, including proliferation, differentiation, metabolism, survival, and apoptosis. Several studies have been successfully(More)
  • 1