Learn More
Bayesian model selection (BMS) is a powerful method for determining the most likely among a set of competing hypotheses about the mechanisms that generated observed data. BMS has recently found widespread application in neuroimaging, particularly in the context of dynamic causal modelling (DCM). However, so far, combining BMS results from several subjects(More)
Dynamic causal modeling (DCM) is a generic Bayesian framework for inferring hidden neuronal states from measurements of brain activity. It provides posterior estimates of neurobiologically interpretable quantities such as the effective strength of synaptic connections among neuronal populations and their context-dependent modulation. DCM is increasingly(More)
We present a neural mass model of steady-state membrane potentials measured with local field potentials or electroencephalography in the frequency domain. This model is an extended version of previous dynamic causal models for investigating event-related potentials in the time-domain. In this paper, we augment the previous formulation with parameters that(More)
In this paper, we describe a dynamic causal model (DCM) of steady-state responses in electrophysiological data that are summarised in terms of their cross-spectral density. These spectral data-features are generated by a biologically plausible, neural-mass model of coupled electromagnetic sources; where each source comprises three sub-populations. Under(More)
We present a review of dynamic causal modeling (DCM) for magneto- and electroencephalography (M/EEG) data. DCM is based on a spatiotemporal model, where the temporal component is formulated in terms of neurobiologically plausible dynamics. Following an intuitive description of the model, we discuss six recent studies, which use DCM to analyze M/EEG and(More)
Psychedelic drugs produce profound changes in consciousness, but the underlying neurobiological mechanisms for this remain unclear. Spontaneous and induced oscillatory activity was recorded in healthy human participants with magnetoencephalography after intravenous infusion of psilocybin--prodrug of the nonselective serotonin 2A receptor agonist and classic(More)
Cortico-basal ganglia-thalamocortical circuits are severely disrupted by the dopamine depletion of Parkinson's disease (PD), leading to pathologically exaggerated beta oscillations. Abnormal rhythms, found in several circuit nodes are correlated with movement impairments but their neural basis remains unclear. Here, we used dynamic causal modelling (DCM)(More)
Acetylcholine (ACh) is a neuromodulatory transmitter implicated in perception and learning under uncertainty. This study combined computational simulations and pharmaco-electroencephalography in humans, to test a formulation of perceptual inference based upon the free energy principle. This formulation suggests that ACh enhances the precision of bottom-up(More)
The role of dopamine in behaviour and decision-making is often cast in terms of reinforcement learning and optimal decision theory. Here, we present an alternative view that frames the physiology of dopamine in terms of Bayes-optimal behaviour. In this account, dopamine controls the precision or salience of (external or internal) cues that engender action.(More)
We describe a Bayesian inference scheme for quantifying the active physiology of neuronal ensembles using local field recordings of synaptic potentials. This entails the inversion of a generative neural mass model of steady-state spectral activity. The inversion uses Expectation Maximization (EM) to furnish the posterior probability of key synaptic(More)