Rosalinda Díaz

Learn More
Involuntary attention to auditory stimulus changes during a visual discrimination task was studied with event-related potentials (ERPs) recorded from the human scalp. A repetitive standard tone or an infrequent, slightly higher deviant tone preceded each visual target stimulus. Deviant tones elicited the mismatch negativity and P3a ERP components and caused(More)
Prism adaptation, a form of procedural learning, is a phenomenon in which the motor system adapts to new visuospatial coordinates imposed by prisms that displace the visual field. Once the prisms are withdrawn, the degree and strength of the adaptation can be measured by the spatial deviation of the motor actions in the direction opposite to the visual(More)
Prism adaptation, a form of procedural learning, requires the integration of visual and motor information for its proper acquisition. Although the role of the visual feedback has begun to be understood, the nature of the motor information necessary for the development of the adaptation remains unknown. In this work we have tested the idea that modifying the(More)
Prism adaptation is a form of visuomotor learning in which the visual and motor systems need to be adjusted because a visual perturbation is produced by horizontally displacing prisms. Despite being known for over two centuries, the neuronal substrates of this phenomenon are not yet completely understood. In this article the possible role of the basal(More)
Visuomotor adaptation is often driven by error-based (EB) learning in which signed errors update motor commands. There are, however, visuomotor tasks where signed errors are unavailable or cannot be mapped onto appropriate motor command changes, rendering EB learning ineffective; and yet, healthy subjects can learn in these EB learning-free conditions.(More)
In the present study the olfactory system of hereditary ataxia patients was tested using the smell identification test. Two previous findings suggested a possible olfactory impairment in these patients. First, an olfactory dysfunction has been found in different neurodegenerative diseases, and second, human functional imaging has shown cerebellar activation(More)
Spinocerebellar ataxia type 7 (SCA7) is a progressive neurodegenerative disorder characterized by cerebellar ataxia and visual loss. It is caused by a CAG repeat expansion in the gene encoding the ataxin 7 protein. Visual loss is due to a progressive atrophy of photoreceptor cells that results in macular degeneration in more advanced stages. Initial(More)
In prism adaptation, subjects adapt to new visuospatial coordinates imposed by wedge prisms that laterally displace the visual field. During this process, subjects develop and store new visuomotor coordinates in order to compensate for the displacement of visual stimuli. After the prisms are removed, subjects show an aftereffect in the opposite direction of(More)
While sensorimotor adaptation to prisms that displace the visual field takes minutes, adapting to an inversion of the visual field takes weeks. In spite of a long history of the study, the basis of this profound difference remains poorly understood. Here, we describe the computational issue that underpins this phenomenon and presents experiments designed to(More)
BACKGROUND Motor deficits are a critical component of the clinical characteristics of patients with spinocerebellar ataxia type 2. However, there is no current information on the preclinical manifestation of those motor deficits in presymptomatic gene carriers. To further understand and characterize the onset of the clinical manifestation in this disease,(More)