Rosalind S. Labow

Learn More
Isolated cell systems of human neutrophils (PMNs) and monocyte-derived macrophages (MDMs) were used to compare the destructive potential of these cells during the acute and chronic phases of inflammation, respectively. The contrast in the damage to poly(urethane)s (PUs) was monitored by measuring radiolabel release elicited from a(More)
Presently, there is a lack of fundamental understanding regarding changes in collagen’s molecular state due to mechanical damage. The bovine tail tendon (BTT; steers approximately 30 months) was characterized and used as an in vitro model for investigating the effect of tensile mechanical overload on collagen susceptibility to proteolysis by acetyltrypsin(More)
After almost half a century of use in the health field, polyurethanes (PUs) remain one of the most popular group of biomaterials applied for medical devices. Their popularity has been sustained as a direct result of their segmented block copolymeric character, which endows them with a wide range of versatility in terms of tailoring their physical(More)
Enzyme-induced liberation of components from seven different radiolabeled polyurethanes was monitored by radiolabel counting of the incubation solutions and product isolation by high performance liquid chromatography (HPLC). The polyurethanes were selected to reflect variations in the hard-segment chemistry, soft-segment chemistry, and polyurethane(More)
Monocyte-derived macrophages (MDM) and multinucleated foreign body giant cells (FBGC) are the primary cell types that remain at the cell-material interface of polyurethane (PU)-based medical devices as a result of chronic inflammatory responses. In vitro studies have demonstrated that MDM possess degradative potential toward PU, which can result in device(More)
Di(2-ethylhexyl)phthalate and its principal metabolite, mono(2-ethylhexyl)phthalate, are contaminants of blood that are extracted on contact with polyvinylchloride surfaces, such as blood collection bags and tubing used in cardiopulmonary bypass. In this study, levels of the two plasticizers were measured in patients who underwent coronary artery bypass(More)
Monocytes adherent to implanted biomaterials differentiate into macrophages while synthesizing large amounts of degradative enzymes, including cholesterol esterase (CE), which previously has been shown to degrade poly(urethane)s. Human peripheral blood monocytes were cultured on tissue culture grade polystyrene (PS), and two model poly(urethane)s were(More)
High porosity and pore interconnectivity are important features of a successful tissue engineering scaffold. The objective of this work was to optimize the pore interconnectivity and to increase the porosity of an elastomeric degradable/polar/hydrophobic/ionic (D-PHI) polyurethane porous scaffold while maintaining its mechanical integrity in order to allow(More)
The monocyte-derived macrophage (MDM), present at biomaterial implantations, can increase, decrease or redirect the inflammatory and subsequent wound healing process associated with the presence of a biomaterial. Understanding MDM responses to biomaterials is important for improved prediction and design of biomaterials for tissue engineering. This study(More)