Rosalind J. Sadleir

Learn More
Transcranial direct current stimulation (tDCS) is an emerging neuromodulation therapy that has been experimentally determined to affect a wide range of behaviors and diseases ranging from motor, cognitive, and memory processes to depression and pain syndromes. The effects of tDCS may be inhibitory or excitatory, depending on the relative polarities of(More)
A prototype electrical impedance tomography system was evaluated prior to its use for the detection of intraperitoneal bleeding, with the assistance of patients undergoing continuous ambulatory peritoneal dialysis (CAPD). The system was sensitive enough to detect small amounts of dialysis fluid appearing in subtractive images over short time periods.(More)
Distributions of current produced by transcranial direct current stimulation (tDCS) in humans were predicted by a finite-element model representing several individual and collective refinements over prior efforts. A model of the entire human head and brain was made using a finely meshed (1.1x1.1x1.4mm(3) voxel) tissue dataset derived from the MRI data set(More)
Electrode properties are key to the quality of measured biopotential signals. Ubiquitous health care systems require long-term monitoring of biopotential signals from normal volunteers and patients in home or hospital environments. In these settings it is appropriate to use dry textile electrode networks for monitoring purposes, rather than the gel or(More)
The Howland current pump is a popular bioelectrical circuit, useful for delivering precise electrical currents. In applications requiring high precision delivery of alternating current to biological loads, the output impedance of the Howland is a critical figure of merit that limits the precision of the delivered current when the load changes. We explain(More)
Presented here is a model of neural tissue in a conductive medium stimulated by externally injected currents. The tissue is described as a conductively isotropic bidomain, i.e. comprised of intra and extracellular regions that occupy the same space, as well as the membrane that divides them, and the injection currents are described as a pair of source and(More)
The formal treatment of tissue as two coupled continua is referred to as a bidomain model. Bidomain models have recently been used to describe the properties of neural tissue and nerve fiber bundles [1, 2]. By adapting the Hodgkin Huxley equations in COMSOL Multiphysics, we have investigated the propagation of an action potential through neural tissue by(More)
Current density distributions in five selected structures, namely, anterior superior temporal gyrus (ASTG), hippocampus (HIP), inferior frontal gyrus (IFG), occipital lobe (OCC) and pre-central gyrus (PRC) were investigated as part of a comparison between electrostatic finite element models constructed directly from MRI-resolution data (block models), and(More)
The recently increasing role in medical imaging that electrophysiology plays has spurned the need for its quantitative analysis at all scales-ions, cells, tissues, organs, etc.; so, here is presented a model of nerve tissue in a spherical volume excited by a point current source at one pole and a point current sink at the opposite pole. The sphere of tissue(More)
Magnetic resonance electrical impedance tomography (MREIT) is a new modality capable of imaging the electrical properties of human body using MRI phase information in conjunction with external current injection. Recent in vivo animal and human MREIT studies have revealed unique conductivity contrasts related to different physiological and pathological(More)