Rosalind Helen Gunby

Learn More
Imatinib (STI571 or CGP57148B) is an innovative treatment for tumours with a constitutively activated form of c-ABL, c-KIT, or PDGFR. Such tumours include Philadelphia-chromosome-positive (Ph-positive) leukaemias, gastrointestinal stromal tumours, and PDGFR-positive leukaemias. Diseases such as primary hypereosinophilia and dermatofibrosarcoma protuberans(More)
NPM/ALK is an oncogenic fusion protein expressed in approximately 50% of anaplastic large cell lymphoma cases. It derives from the t(2;5)(p23;q35) chromosomal translocation that fuses the catalytic domain of the tyrosine kinase, anaplastic lymphoma kinase (ALK), with the dimerization domain of the ubiquitously expressed nucleophosmin (NPM) protein.(More)
The anaplastic lymphoma kinase (ALK), whose constitutively active fusion proteins are responsible for 5-10% of non-Hodgkin's lymphomas, shares with the other members of the insulin receptor kinase (IRK) subfamily an activation loop (A-loop) with the triple tyrosine motif Y-x-x-x-Y-Y. However, the amino acid sequence of the ALK A-loop differs significantly(More)
Anaplastic lymphoma kinase (ALK) is a valid target for anticancer therapy; however, potent ALK inhibitors suitable for clinical use are lacking. Because the majority of described kinase inhibitors bind in the ATP pocket of the kinase domain, we have characterized this pocket in ALK using site-directed mutagenesis, inhibition studies, and molecular modeling.(More)
Deregulated apoptosis is a common finding in tumorigenesis. The oncogenic tyrosine kinase nucleophosmin/anaplastic lymphoma kinase (NPM/ALK) delivers a strong survival signal in anaplastic large cell lymphomas (ALCLs). Although NPM/ALK activates multiple antiapoptotic pathways, the biologic relevance and therapeutic potential of more downstream apoptotic(More)
Deregulated activation of protein tyrosine kinases (PTKs) is a frequent event underlying malignant transformation in many types of cancer. The formation of oncogenic fusion tyrosine kinases (FTKs) resulting from genomic rearrangements, represents a common mechanism by which kinases escape the strict controls that normally regulate their expression and(More)
Signals transduced through CD40 rescue cells of the Ramos-Burkitt lymphoma (Ramos-BL) B cell line from surface immunoglobulin M (sIgM)-triggered growth arrest and apoptosis. This study investigates whether protein tyrosine kinase (PTK) activity and tyrosine phosphorylation on p95(vav) and on the p85 regulatory subunit of phosphatidylinositol 3-kinase (PI3(More)
The oncogenic fusion tyrosine kinase nucleophosmin/anaplastic lymphoma kinase (NPM/ALK) induces cellular transformation in anaplastic large-cell lymphomas (ALCLs) carrying the t(2;5) chromosomal translocation. Protein-protein interactions involving NPM/ALK are important for the activation of downstream signaling pathways. This study was aimed at identifying(More)
A crucial issue in the development of molecularly-targeted anticancer therapies is the identification of appropriate molecules whose targeting would result in tumour regression with a minimal level of systemic toxicity. Anaplastic lymphoma kinase (ALK) is a transmembrane receptor tyrosine kinase, normally expressed at low levels in the nervous system. As a(More)
Imatinib mesylate (imatinib) inhibits Bcr/Abl, an oncogenic fusion protein. The in vitro effects of imatinib on BCR/ABL+ leukemic cells include inhibition of Bcr/Abl tyrosine phosphorylation, block of proliferation, and induction of apoptosis. The in vivo effects of imatinib were evaluated in 12 CML (chronic myeloid leukemia) patients in blast crisis or(More)