Rosalba Maci

Learn More
Dysfunction of the microtubule system is emerging as a contributing factor in a number of neurodegenerative diseases. Looking for the potential role played by the microtubule cytoskeleton in neuron degeneration underlying Parkinson's disease (PD), we investigate the influence of the parkinsonism producing neurotoxin 1-methyl-4-phenylpyridinium (MPP+) on(More)
Cytoskeletal proteins have been reported as constituents of cytoplasmic inclusions typical of degenerated neurones in Parkinson's disease and, in addition, the involvement of cytoskeleton in the mechanism of action of the parkinsonism-producing neurotoxin MPP+ is emerging. Here we investigate the influence of MPP+ on the dynamic behaviour of microtubules.(More)
The microtubular system is emerging as a cell target in neurodegeneration evoked by the Parkinsonism-inducing neurotoxin N-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) and its toxic metabolite N-methyl-4-phenylpyridinium (MPP(+)). Looking for a direct effect of the neurotoxin on microtubules, we have undertaken an in vitro study by using microtubule(More)
Among the myriad of cellular functions played by nitric oxide in the brain, there is increasing evidence that nitric oxide might be a primary player in the program of neurogenesis and neuronal differentiation. We have recently reported that tyrosine nitration of proteins is implicated in the signaling pathway triggered by nitric oxide during NGF-induced(More)
Tyrosine nitration of proteins is emerging as a post-translational modification playing a role in physiological conditions. Looking for the molecular events triggered by nitric oxide in nerve growth factor-induced neuronal differentiation, we now find that nitration occurs on the microtubule-associated protein tau. In differentiated PC12 cells, we have(More)
The effect of the neurotoxin MPTP (1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine) on Swiss 3T3 cells was investigated. Cell morphology alterations were observed when 3T3 cell cultures were exposed for 6 h to 1.5 mM MPTP. Using indirect immunofluorescence technique, cytoskeletal elements' organization of microfilaments and microtubules, has been analysed.(More)
In vivo, the neurotoxin MPTP is oxidated to MPP+, which is toxic to dopaminergic neurons. In this paper, we have used MPP+ as a tool to evoke neurotoxicity in the PC12 cell line and investigate the intracellular events that are involved. A cytotoxicity test, performed on undifferentiated and NGF-differentiated PC12 cells, showed that MPP+ is much more toxic(More)
Indirect immunofluorescencc, rhodamine-phalloidin staining and immunoelectron microscopy performed with the on-grid postembedding immunostaining of Lowicryl K4M sections, were used to identify actin in the branchial epithelium of the lower chordate ascidians. The ciliated cells of these invertebrates present two distinct junctional patterns. One consists(More)
  • 1